Oxidation of β-Nicotinamide Adenine Dinucleotide (NADH) by Au Cluster and Nanoparticle Catalysts Aiming for Coenzyme Regeneration in Enzymatic Glucose Oxidation

Supported Au clusters and nanoparticles can oxidize the coenzyme, β-nicotinamide adenine dinucleotide (NADH), under ambient conditions using O2 as an oxidant. The activity for NADH oxidation depend...

[1]  M. Morales,et al.  Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis. , 2013, Chemical communications.

[2]  Joseph F. Parker,et al.  Synthesis of monodisperse [Oct4N(+)][Au25(SR)18(-)] nanoparticles, with some mechanistic observations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  Yan Zhang,et al.  Nano-gold catalysis in fine chemical synthesis. , 2012, Chemical reviews.

[4]  Betina Jørgensen,et al.  Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. , 2006, Angewandte Chemie.

[5]  H. Sakurai,et al.  Aerobic oxidations catalyzed by colloidal nanogold. , 2011, Chemistry, an Asian journal.

[6]  M. Haruta CHAPTER 9 – Relevance of Metal Nanoclusters Size Control in Gold(0) Catalytic Chemistry , 2008 .

[7]  N. Oppenheimer 3 – Chemistry and Solution Conformation of the Pyridine Coenzymes , 1982 .

[8]  Betina Jørgensen,et al.  Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate , 2007 .

[9]  Boi Hoa San,et al.  Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. , 2011, Angewandte Chemie.

[10]  M. Okumura,et al.  Theoretical Investigation for Heterojunction Effects in Polymer-stabilized Au Nanocluster Catalysis: Difference in Catalytic Activity between Au:PVP and Au:PAA , 2016 .

[11]  D. Haltrich,et al.  Engineering an enzymatic regeneration system for NAD(P)H oxidation , 2015 .

[12]  M. Haruta,et al.  Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins , 2009 .

[13]  H. Sakurai,et al.  Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. , 2009, Journal of the American Chemical Society.

[14]  Huimin Zhao,et al.  Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration , 2005, The FEBS journal.

[15]  M. Haruta,et al.  Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. , 2019, Chemical reviews.

[16]  S. Akai Dynamic Kinetic Resolution of Racemic Allylic Alcohols via Hydrolase–Metal Combo Catalysis: An Effective Method for the Synthesis of Optically Active Compounds , 2014 .

[17]  Shiyong Sun,et al.  Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme , 2018, Nanomaterials.

[18]  A. Gopalan,et al.  Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. , 2008, Talanta.

[19]  M. Bochmann,et al.  Reactivity of Gold Hydrides: O2 Insertion into the Au–H Bond , 2014, Organometallics.

[20]  Sida Luo,et al.  Gold Nano-size Effect in Au/SiO2 for Selective Ethanol Oxidation in Aqueous Solution , 2008 .

[21]  T. Akita,et al.  Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. , 2008, Angewandte Chemie.

[22]  H. Oji,et al.  Full‐Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring‐8 , 2010 .

[23]  Wentao Wang,et al.  Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles , 2019, Advanced Synthesis & Catalysis.

[24]  M. Haruta,et al.  Ethanol Oxidation in Water Catalyzed by Gold Nanoparticles Supported on NiO Doped with Cu , 2015, Topics in Catalysis.

[25]  T. Akita,et al.  Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. , 2008, Chemistry.

[26]  John M. Woodley,et al.  Chemoenzymatic Combination of Glucose Oxidase with Titanium Silicalite‐1 , 2010 .

[27]  Xiaohua Huang,et al.  Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+). , 2005, Journal of photochemistry and photobiology. B, Biology.

[28]  A. Corma,et al.  Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. , 2008, Chemistry.

[29]  H. Tsunoyama,et al.  Magic numbers of gold clusters stabilized by PVP. , 2009, Journal of the American Chemical Society.

[30]  Attilio Siani,et al.  Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars , 2005 .

[31]  A. Kiener,et al.  Industrial biocatalysis today and tomorrow , 2001, Nature.

[32]  L. Prati,et al.  Selective Oxidation of D-Glucose on Gold Catalyst , 2002 .

[33]  S. Saidman,et al.  Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes. , 2000, Analytical chemistry.

[34]  J. Bäckvall,et al.  Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines , 2015, Journal of the American Chemical Society.

[35]  Michele Rossi,et al.  The catalytic activity of "naked" gold particles. , 2004, Angewandte Chemie.