Poisoning of Solid Oxide Electrolysis Cells by Impurities

Electrolysis of H 2 0, CO 2 , and co-electrolysis of H 2 O and CO 2 was studied in Ni/yttria-stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells (SOECs) consisting of a Ni/YSZ support, a Ni/YSZ electrode layer, a YSZ electrolyte, and an lanthanum strontium manganite (LSM)/YSZ oxygen electrode When applying the gases as received, the cells degraded significantly at the Ni/YSZ electrode, whereas only minor (and initial) degradation was observed for either the Ni/YSZ or LSM/YSZ electrode. Application of clean gases to the Ni/YSZ electrode resulted in operation without any long-term degradation, in fact some cells activated slightly. This shows that the durability of these SOECs is heavily influenced by impurities in the inlet gases. Cleaning the inlet gases to the Ni/YSZ electrode may be a solution for operating these Ni/YSZ-based SOECs without long-term degradation.

[1]  Mogens Bjerg Mogensen,et al.  A Method to Separate Process Contributions in Impedance Spectra by Variation of Test Conditions , 2007 .

[2]  Christopher Graves,et al.  Production of Synthetic Fuels by Co-Electrolysis of Steam and Carbon Dioxide , 2009 .

[3]  Hartmut Wendt,et al.  Electrochemical Hydrogen Technologies: Electrochemical Production and Combustion of Hydrogen , 1990 .

[4]  K. R. Sridhar,et al.  Oxygen Production on Mars Using Solid Oxide Electrolysis , 1995 .

[5]  M. Mogensen,et al.  Performance and Durability of Solid Oxide Electrolysis Cells , 2006 .

[6]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[7]  J. O’Brien,et al.  Performance of Planar High-Temperature Electrolysis Stacks for Hydrogen Production from Nuclear Energy , 2007 .

[8]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[9]  Frank Zeman,et al.  Energy and material balance of CO2 capture from ambient air. , 2007, Environmental science & technology.

[10]  Carl M. Stoots,et al.  Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide , 2009 .

[11]  Scott Elliott,et al.  Compensation of atmospheric CO2 buildup through engineered chemical sinkage , 2001 .

[12]  Mogens Bjerg Mogensen,et al.  Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes , 1998 .

[13]  C. Mansilla,et al.  Can high temperature steam electrolysis function with geothermal heat , 2007 .

[14]  S. Jensen,et al.  Silica Segregation in the Ni ∕ YSZ Electrode , 2007 .

[15]  A. Isenberg,et al.  Carbon dioxide and water vapor high temperature electrolysis , 1989 .

[16]  P. Hendriksen,et al.  Diffusion and conversion impedance in solid oxide fuel cells , 2008 .

[17]  Kerry D. Meinhardt,et al.  Electrode Performance in Reversible Solid Oxide Fuel Cells , 2007 .

[18]  A. Hughes,et al.  Impurity and Yttrium segregation in yttria-tetragonal zirconia , 1991 .

[19]  S. Ebbesen,et al.  Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis , 2011 .

[20]  I. Chorkendorff,et al.  Effect of impurities on structural and electrochemical properties of the Ni-YSZ interface. , 2003 .

[21]  S. Ebbesen,et al.  Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells , 2009 .

[22]  J. Bowen,et al.  Nanoscale Chemical Analysis and Imaging of Solid Oxide Cells , 2008 .

[23]  S. Jensen,et al.  Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode , 2008 .

[24]  S. Jensen,et al.  Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup , 2009 .

[25]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[26]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[27]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[28]  C. Liu,et al.  Carbon Dioxide Reduction on Gadolinia-Doped Ceria Cathodes , 2008 .

[29]  A. Hagen,et al.  Properties and Performance of SOFCs Produced on a Pre‐Pilot Plant Scale , 2006 .

[30]  David W Keith,et al.  Carbon dioxide capture from atmospheric air using sodium hydroxide spray. , 2008, Environmental science & technology.

[31]  Dominik Wajszel A Method for Calculating Paralinear Constants for the Formation of Volatile Scale , 1963 .

[32]  C. Stoots,et al.  Operation of High Temperature Steam Electrolyzer Module , 2007 .

[33]  S. Ebbesen,et al.  Solid Oxide Electrolysis Cells: Degradation at High Current Densities , 2010 .

[34]  S. Jensen,et al.  Highly efficient high temperature electrolysis , 2008 .

[35]  Klaus S. Lackner,et al.  A Guide to CO2 Sequestration , 2003, Science.

[36]  A. Borhan,et al.  High-temperature steam electrolysis: Technical and economic evaluation of alternative process designs , 1986 .

[37]  S. Jensen,et al.  Hydrogen and synthetic fuel production from renewable energy sources , 2007 .

[38]  Y. L. Liu,et al.  Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy , 2005 .

[39]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[40]  S. Ebbesen,et al.  Exceptional Durability of Solid Oxide Cells , 2010 .

[41]  Dennis Y.C. Leung,et al.  Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant , 2007 .

[42]  M. Zahid,et al.  High temperature water electrolysis in solid oxide cells , 2008 .

[43]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[44]  A. Isenberg Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures , 1981 .

[45]  Mogens Bjerg Mogensen,et al.  Effects of impurities on microstructure in Ni/YSZ–YSZ half-cells for SOFC , 2003 .

[46]  Matthew Leach,et al.  Flexible Operation of Coal Fired Power Plants with Postcombustion Capture of Carbon Dioxide , 2009 .

[47]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[48]  Akira Ueno,et al.  Investigation on Degradation in Long-Term Operations of Four Different Stack/Modules , 2007 .

[49]  Mogens Bjerg Mogensen,et al.  Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy , 2007 .

[50]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[51]  E. Iglesia,et al.  Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts , 2004 .

[52]  K. Sridhar,et al.  Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface , 2004 .

[53]  John T. S. Irvine,et al.  Efficient Reduction of CO2 in a Solid Oxide Electrolyzer , 2008 .

[54]  Peter Vang Hendriksen,et al.  Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load , 2006 .

[55]  R. E. Hann,et al.  Paralinear Oxidation of CVD SiC in Water Vapor , 1997 .

[56]  R. Streicher,et al.  Hydrogen production by high temperature electrolysis of water vapour , 1980 .

[57]  A. Hagen,et al.  The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells , 2009 .

[58]  S. Barnett,et al.  Syngas Production By Coelectrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle , 2009 .

[59]  F. Goodridge Electrochemical hydrogen technologies , 1991 .

[60]  M. Zahid,et al.  Electronic Conduction of Yttria-Stabilized Zirconia Electrolyte in Solid Oxide Cells Operated in High Temperature Water Electrolysis , 2009 .