On the Tail of the Waiting Time in a Markov-Modulated M/G/1 Queue

We show that the "exponential decay parameter" of the waiting time in a Markov-modulatedM/G/1 queue is no larger than that of the correspondingM/G/1 queue with "averaged" parameters, and we give a necessary and sufficient condition for equality. We also explore the effect of speeding up the modulation process. A key tool is a Markov-modulated fluid model.

[1]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .

[2]  Tomasz Rolski,et al.  Queues with nonstationary inputs , 1989, Queueing Syst. Theory Appl..

[3]  T. Rolski Queues with non-stationary input stream: Ross's conjecture , 1981, Advances in Applied Probability.

[4]  E. Çinlar Markov additive processes. II , 1972 .

[5]  D. Gaver Imbedded Markov Chain Analysis of a Waiting-Line Process in Continuous Time , 1959 .

[6]  P. Le Gall,et al.  Les systèmes avec - ou - sans attente et les processus stochastiques , 1967 .

[7]  W. Whitt,et al.  Asymptotics for steady-state tail probabilities in structured markov queueing models , 1994 .

[8]  S. Asmussen Risk theory in a Markovian environment , 1989 .

[9]  M. Neuts The caudal characteristic curve of queues , 1984, Advances in Applied Probability.

[10]  S. Asmussen Equilibrium properties of the M/G/1 queue , 1981 .

[11]  J. Cohen Eigenvalue inequalities for random evolutions: origins and open problems , 1984 .

[12]  Characterisation of a multivariate stochastic ordering , 1988, Bulletin of the Australian Mathematical Society.

[13]  Shmuel Friedland,et al.  Eigenvalue Inequalities for Products of Matrix Exponentials , 1982 .

[14]  Linda V. Green,et al.  The N-seasons S-servers loss system , 1987 .

[15]  A. G. Hawkes,et al.  Les Systems avec ou sans Attente et les Processus Stochastiques. , 1964 .

[16]  Michael Pinedo,et al.  Bounds and inequalities for single server loss systems , 1990, Queueing Syst. Theory Appl..

[17]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[18]  M. Neuts A Versatile Markovian Point Process , 1979 .

[19]  S. Ross Average delay in queues with non-stationary Poisson arrivals , 1978, Journal of Applied Probability.

[20]  Michael Pinedo,et al.  Monotonicity results for queues with doubly stochastic Poisson arrivals: Ross's conjecture , 1991, Advances in Applied Probability.

[21]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[22]  Søren Asmussen,et al.  Does Markov-Modulation Increase the Risk? , 1995, ASTIN Bulletin.

[23]  J. Keilson,et al.  A central limit theorem for processes defined on a finite Markov chain , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Cheng-Shang Chang,et al.  Perturbation analysis of the M/M/1 queue in a markovian environment via the matrix-geometric method , 1993 .

[25]  P. Ney,et al.  Markov Additive Processes I. Eigenvalue Properties and Limit Theorems , 1987 .

[26]  Hermann Thorisson,et al.  Large deviation results for time-dependent queue length distributions , 1988 .

[27]  Ward Whitt,et al.  Comparison methods for queues and other stochastic models , 1986 .

[28]  Ward Whitt,et al.  Exponential Approximations for Tail Probabilities in Queues II: Sojourn Time and Workload , 1996, Oper. Res..

[29]  Gian-Carlo Rota Inequalities in statistics and probability: Y. L. Tong (Ed.), Institute of Mathematical Statistics, 1984, 253 pp. , 1988 .

[30]  Ward Whitt,et al.  Exponential Approximations for Tail Probabilities in Queues, I: Waiting Times , 1995, Oper. Res..

[31]  Søren Asmussen,et al.  Ladder heights and the Markov-modulated M/G/1 queue☆ , 1991 .