A Category Theory Approach to Conceptual Data Modeling

This paper describes a category theory semantics for conceptual data modeling. The conceptual data modeling technique used can be seen as a generalization of most existing conceptual data modeling techniques. It contains features such as specialization, generalization, and power types. The semantics uses only simple category theory constructs such as (co)limits and epi- and monomorphisms. Therefore, the semantics can be applied to a wide range of instance categories, it is not restricted to topoi or cartesian closed categories. By choosing appropriate instance categories, features such as missing values, multi-valued relations, and uncertainty can be added to conceptual data models.

[1]  D. A Jardine,et al.  Concepts and terminology for the conceptual schema and the information base , 1984 .

[2]  Maria E. Orlowska,et al.  Fact‐oriented modelling for data analysis , 1992, Inf. Syst. J..

[3]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[4]  A.P.J.M. Siebes,et al.  On complex Objects , 1990 .

[5]  Janis A. Bubenko,et al.  Information System Methodologies - A Research View , 1986, Information Systems Design Methodologies: Improving the Practice.

[6]  Arthur H. M. ter Hofstede,et al.  Formal definition of a conceptual language for the description and manipulation of information models , 1993, Inf. Syst..

[7]  Chris Tuijn Data modeling from a categorical perspective , 1994 .

[8]  Cliff B. Jones,et al.  Systematic software development using VDM , 1986, Prentice Hall International Series in Computer Science.

[9]  Dan A. Simovici,et al.  A categorical approach to database semantics , 1994, Mathematical Structures in Computer Science.

[10]  Terry Halpin,et al.  Conceptual Schema and Relational Database Design , 1995 .

[11]  Dennis McLeod,et al.  Database description with SDM: a semantic database model , 1981, TODS.

[12]  Won Kim,et al.  Object-Oriented Concepts, Databases, and Applications , 1989 .

[13]  Joan M. Morrissey,et al.  Imprecise information and uncertainty in information systems , 1990, TOIS.

[14]  Serge Abiteboul,et al.  IFO: a formal semantic database model , 1987, TODS.

[15]  Andrew M. Pitts,et al.  Fuzzy sets do not form a topos , 1982 .

[16]  Michael L. Brodie On the Development of Data Models , 1982, On Conceptual Modelling.

[17]  David W. Shipman,et al.  The functional data model and the data languages DAPLEX , 1981, TODS.

[18]  David W. Shipman The functional data model and the data language DAPLEX , 1979, SIGMOD '79.

[19]  Richard T. Snodgrass,et al.  Temporal databases status and research directions , 1990, SGMD.

[20]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[21]  David Maier,et al.  Readings in Object-Oriented Database Systems , 1989 .

[22]  Gad Ariav,et al.  A temporally oriented data model , 1986, TODS.

[23]  Pericles Loucopoulos,et al.  A conceptual modelling formalism for temporal database applications , 1991, Inf. Syst..

[24]  Serge Abiteboul,et al.  IFO: A Formal Semantic Database Model , 1987, ACM Trans. Database Syst..

[25]  Numérisation de documents anciens mathématiques Informatique théorique et applications : Theoretical informatics and applications. , 1986 .

[26]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Martin Gogolla,et al.  Conceptual modelling of database applications using extended ER model , 1992, Data Knowl. Eng..

[29]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[30]  Arthur H. M. ter Hofstede,et al.  Expressiveness in Conceptual Data Modelling , 1993, Data Knowl. Eng..

[31]  M. Barr FUZZY SET THEORY AND TOPOS THEORY , 1986 .

[32]  Charles W. Bachman,et al.  Data structure diagrams , 1969, DATB.

[33]  T. J. Teorey,et al.  A logical design methodology for relational databases using the extended entity-relationship model , 1986, CSUR.

[34]  G. M. Nijssen,et al.  Conceptual schema and relational database design - a fact oriented approach , 1989 .

[35]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.

[36]  J. Michael Spivey,et al.  Understanding Z : A specification language and its formal semantics , 1985, Cambridge tracts in theoretical computer science.