Robust parent-identifying codes

Codes with the identifiable parent property (IPP codes) are used in traitor tracing schemes that protect data broadcast by the publisher from unauthorized access or distribution. An n-word y over a finite alphabet is called a descendant of a set of t words x<sup>1</sup>, …, x<sup>t</sup> if y<inf>i</inf> ∊ {x<sup>1</sup><inf>i</inf>, …, x<sup>t</sup><inf>i</inf>} for all i = 1, … n. A code C = {x<sup>1</sup>, …, x<sup>M</sup>} is said to have the i-IPP property if for any n-word y that is a descendant of at most t parents belonging to the code it is possible to identify at least one of them. The existence of good i-IPP codes is known from earlier works. We introduce a robust version of IPP codes which allows unconditional identification of parents even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. By linking this problem to perfect hash functions and, more generally, to hash distances of a code, we prove initial results on the proportion of such coordinates that can be tolerated under the unconditional recovery requirement.

[1]  Yuan Zhou Introduction to Coding Theory , 2010 .

[2]  Alexander Barg,et al.  On the Fingerprinting Capacity Under the Marking Assumption , 2006, IEEE Transactions on Information Theory.

[3]  Miguel Soriano,et al.  Identification of traitors in algebraic-geometric traceability codes , 2004, IEEE Transactions on Signal Processing.

[4]  Thomas Sirvent Traitor tracing scheme with constant ciphertext rate against powerful pirates , 2006, IACR Cryptol. ePrint Arch..

[5]  Amos Fiat,et al.  Tracing Traitors , 1994, CRYPTO.

[6]  Gábor Tardos,et al.  High rate fingerprinting codes and the fingerprinting capacity , 2009, SODA.

[7]  Alexander Barg,et al.  Digital fingerprinting codes: problem statements, constructions, identification of traitors , 2003, IEEE Trans. Inf. Theory.

[8]  R. L. Fountain,et al.  The fingerprinted database , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[9]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[10]  L. A. Bassalygo,et al.  Hash codes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[11]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[12]  Gérard D. Cohen,et al.  A hypergraph approach to the identifying parent property: the case of multiple parents , 2001, Electron. Notes Discret. Math..

[13]  Gérard D. Cohen,et al.  Generalized hashing and parent-identifying codes , 2003, J. Comb. Theory, Ser. A.

[14]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[15]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[16]  Moni Naor,et al.  Traitor tracing with constant size ciphertext , 2008, CCS.

[17]  Gábor Tardos,et al.  Optimal probabilistic fingerprint codes , 2003, STOC '03.

[18]  Catherine A. Meadows,et al.  Fingerprinting Long Forgiving Messages , 1985, CRYPTO.

[19]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[20]  Birgit Pfitzmann,et al.  Error- and Collusion-Secure Fingerprinting for Digital Data , 1999, Information Hiding.

[21]  Olivier Billet,et al.  Efficient Traitor Tracing from Collusion Secure Codes , 2008, ICITS.