Evaluation of the Jacobians of Infrared Radiation Models for Variational Data Assimilation

Abstract In this paper, linearized versions of fast infrared radiative transfer schemes for variational data assimilation are studied. A neural network–based infrared broadband radiation model (NeuroFlux) is compared with the European Centre for Medium-Range Weather Forecasts operational radiation model. Also, the Radiative Transfer for Television and Infrared Observation Satellite Operational Vertical Sounder (RTTOV) scheme for satellite brightness temperature computation is compared with a more physically based scheme: the narrowband Synsatrad model developed at the European Organization for the Exploitation of Meteorological Satellites. The Jacobians are examined. They are converted into flux perturbations with the tangent-linear approximation and into atmospheric variable increments with a one-dimensional variational assimilation system. For NeuroFlux and RTTOV, despite accurate flux and radiance computation, the sensitivity with respect to water vapor needs to be improved. However, the random structu...

[1]  Alain Chedin,et al.  TIGR‐like atmospheric‐profile databases for accurate radiative‐flux computation , 2000 .

[2]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[3]  M. Matricardi,et al.  Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances. , 1999, Applied optics.

[4]  A. Mcnally Estimates of short‐range forecast‐temperature error correlations and the implications for radiance‐data assimilation , 2000 .

[5]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[6]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[7]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[8]  Johannes Schmetz,et al.  Synthetic satellite radiances using the radiance sampling method , 1997 .

[9]  Jean-Noël Thépaut,et al.  Simplified and Regular Physical Parameterizations for Incremental Four-Dimensional Variational Assimilation , 1999 .

[10]  H. R. Johnson,et al.  A statistical method for treating molecular line opacities. [in cool stellar atmospheres] , 1976 .

[11]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[12]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[13]  Frédéric Chevallier,et al.  Use of a neural‐network‐based long‐wave radiative‐transfer scheme in the ECMWF atmospheric model , 2000 .

[14]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .

[15]  A. Hollingsworth,et al.  Objective Analysis for Numerical Weather Prediction , 1986 .

[16]  Y. Sasaki,et al.  An ObJective Analysis Based on the Variational Method , 1958 .

[17]  J. R. Eyre,et al.  Assimilation of TOVS radiance information through one-dimensional variational analysis , 1993 .

[18]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[19]  Luc Fillion,et al.  Coupling of Moist-Convective and Stratiform Precipitation Processes for Variational Data Assimilation , 2000 .

[20]  L. Larrabee Strow,et al.  An Intercomparison of Radiation Codes for Retrieving Upper-Tropospheric Humidity in the 6.3-μm Band: A Report from the First GVaP Workshop , 2000 .

[21]  Jean-Jacques Morcrette,et al.  On the Effects of the Temporal and Spatial Sampling of Radiation Fields on the ECMWF Forecasts and Analyses , 2000 .

[22]  J. Morcrette,et al.  Comparison of Model Fluxes with Surface and Top-of-the-Atmosphere Observations , 2000 .

[23]  Virginie Marécal,et al.  Variational Retrieval of Temperature and Humidity Profiles from TRMM Precipitation Data , 2000 .

[24]  Michèle Vesperini,et al.  Variational analysis of humidity information from TOVS radiances , 1996 .

[25]  H E Fleming,et al.  Atmospheric transmittance of an absorbing gas. 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios. , 1979, Applied optics.

[26]  A. Chédin,et al.  Une méthode utilisant les techniques neuronales pour le calcul rapide de la distribution verticale du bilan radiatif thermique terrestre , 1996 .

[27]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[28]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[29]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[30]  Ulrike Langematz,et al.  Update on the global ozone climatology and on concurrent ozone and temperature trends , 1995, Remote Sensing.

[31]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[32]  Jean-François Mahfouf,et al.  Influence of physical processes on the tangent‐linear approximation , 1999 .

[33]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[34]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[35]  J. Morcrette Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system , 1991 .

[36]  Noëlle A. Scott,et al.  The "weight smoothing" regularization of MLP for Jacobian stabilization , 1999, IEEE Trans. Neural Networks.

[37]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .