Novel titanium(IV) diolate complexes with additional O‐donor as precatalyst for the synthesis of ultrahigh molecular weight polyethylene with reduced entanglement density: Influence of polymerization conditions and its implications on mechanical properties

[1]  K. Bryliakov,et al.  Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: Recent advances , 2021 .

[2]  Bo-geng Li,et al.  Functionalized Phenoxy-Imine Catalyst for Synthesizing Highly Crystalline Nascent UHMWPEs. 1. Molecular Weight Characteristics and Polymer Morphologies , 2020 .

[3]  S. Rastogi,et al.  Structural modification of phenoxyimine titanium complexes and activation studies with alkylaluminum compounds , 2020, ChemCatChem.

[4]  Z. Xin,et al.  Mechanism of size effects of a filler on the wear behavior of ultrahigh molecular weight polyethylene , 2020 .

[5]  I. Shundrina,et al.  Highly active titanium( IV ) dichloride FI catalysts bearing a diallylamino group for the synthesis of disentangled UHMWPE , 2020 .

[6]  A. S. Lyadov,et al.  A Titanium(IV) Complex with an OSO-Type Ligand as a Catalyst for the Synthesis of Ultrahigh-Molecular-Weight Polyethylene , 2020, Petroleum Chemistry.

[7]  N. Hopkinson,et al.  Characterisation of UHMWPE Polymer Powder for Laser Sintering , 2019, Materials.

[8]  S. Mecking,et al.  Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization , 2019, Nature Communications.

[9]  Boping Liu,et al.  Hierarchical structure manipulation of UHMWPE/HDPE fibers through in-reactor blending with Cr/V bimetallic catalysts , 2019, Composites Science and Technology.

[10]  P. Dorovatovskii,et al.  Novel titanium (IV) complexes with 1,2-diolate ligands: Synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production , 2018, Journal of Organometallic Chemistry.

[11]  S. Mecking,et al.  Controlled Polymerization in Polar Solvents to Ultrahigh Molecular Weight Polyethylene. , 2018, Journal of the American Chemical Society.

[12]  R. Mülhaupt,et al.  All-polyethylene composites reinforced via extended-chain UHMWPE nanostructure formation during melt processing , 2018 .

[13]  M. Buzin,et al.  Novel titanium (IV) diolate complexes: Synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production , 2017 .

[14]  Chao Yu,et al.  Transition metal complexes bearing tridentate ligands for precise olefin polymerization , 2016 .

[15]  H. Olivier-Bourbigou,et al.  Tridentate Aryloxy‐Based Titanium Catalysts towards Ethylene Oligomerization and Polymerization , 2015 .

[16]  S. Ronca,et al.  Solvent-Free Solid-State-Processed Tapes of Ultrahigh-Molecular-Weight Polyethylene: Influence of Molar Mass and Molar Mass Distribution on the Tensile Properties , 2015 .

[17]  S. Ronca,et al.  A hemi-metallocene chromium catalyst with trimethylaluminum-free methylaluminoxane for the synthesis of disentangled ultra-high molecular weight polyethylene. , 2015, Macromolecular rapid communications.

[18]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[19]  S. Mecking,et al.  Post-metallocenes in the industrial production of polyolefins. , 2014, Angewandte Chemie.

[20]  S. Ivanchev,et al.  Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst , 2012, Polymer Science Series A.

[21]  L. Magna,et al.  New bis(aryloxy)-Ti(IV) complexes and their use for the selective dimerization of ethylene to 1-butene. , 2012, Dalton transactions.

[22]  C. Redshaw,et al.  Tridentate ligands and beyond in group IV metal α-olefin homo-/co-polymerization catalysis. , 2012, Chemical Society reviews.

[23]  Yefeng Yao,et al.  Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route , 2011 .

[24]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  H. Terao,et al.  FI catalysts for olefin polymerization--a comprehensive treatment. , 2011, Chemical reviews.

[26]  G. Michler,et al.  Correlation among powder morphology, compactability, and mechanical properties of consolidated nascent UHMWPE , 2010 .

[27]  P. M. Gurubasavaraj,et al.  Hetero-bimetallic Complexes of Titanatranes with Aluminum Alkyls: Synthesis, Structural Analysis, and Their Use in Catalysis for Ethylene Polymerization , 2010 .

[28]  G. G. Peters,et al.  Molar Mass and Molecular Weight Distribution Determination Of UHMWPE Synthesized Using a Living Homogeneous Catalyst , 2010 .

[29]  M. Hummert,et al.  A novel oxovanadium(V) complex of 2-(2-butoxyethoxy)ethanolate with high catalytic activities for polymerisation and epoxidation , 2008 .

[30]  F. Chang,et al.  Investigation of the drawing mechanism of UHMWPE fibers , 2008 .

[31]  T. Fujita,et al.  MgCl2/R'nAl(OR)3-n: an excellent activator/support for transition-metal complexes for olefin polymerization. , 2006, Chemistry.

[32]  I. Karacan Molecular structure and orientation of gel‐spun polyethylene fibers , 2006 .

[33]  Y. Leng,et al.  Processing and mechanical properties of HA/UHMWPE nanocomposites. , 2006, Biomaterials.

[34]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[35]  J. C. Chadwick,et al.  MAO‐Free Activation of Metallocenes and other Single‐Site Catalysts for Ethylene Polymerization using Spherical Supports based on MgCl2 , 2004 .

[36]  Wei Wang,et al.  Ethylene Polymerization Catalyzed by Titanium(IV) Complexes of a Triaryloxoamine Ligand [TiX{(OArCH2)3N}] , 2004 .

[37]  M. A. Shcherbina,et al.  Monoclinic Phase in Reactor Powders of Ultra-High-Molecular-Weight Polyethylene and Its Changes during Compaction and Monolithization 1 , 2004 .

[38]  Stuart R. Dubberley,et al.  Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes. , 2003, Chemistry.

[39]  R. Mülhaupt,et al.  Titanium and zirconium complexes that contain a tridentate bis(phenolato) ligand of the [OOO]-type , 2003 .

[40]  R. Benavente,et al.  Mechanical Properties of Ultra High Molecular Weight Polyethylene Obtained with Different Cocatalyst Systems , 2002 .

[41]  Y. Joo,et al.  Characterization of ultra high molecular weight polyethyelene nascent reactor powders by X-ray diffraction and solid state NMR , 2000 .

[42]  A. Peacock Handbook of Polyethylene: Structures: Properties, and Applications , 2000 .

[43]  L. Jerzykiewicz,et al.  Preparation and crystal structures of donor-functionalized 2,2′-oxydiethanol complexes of titanium, yttrium, magnesium and sodium , 1998 .

[44]  A. Barnetson,et al.  Observations on the sintering of ultra-high molecular weight polyethylene (UHMWPE) powders , 1995 .

[45]  D. Carlsson,et al.  A Review of the Methods For Detecting and Characterizing Hydroperoxide Groups in Oxidized Polyolefins , 1995 .

[46]  Paul S. Smith,et al.  High strength/high modulus polyethylene: synthesis and processing of ultra-high molecular weight virgin powders , 1989 .

[47]  R. Porter,et al.  Two-stage drawing of ultra-high molecular weight polyethylene reactor powder , 1987 .

[48]  Paul S. Smith,et al.  Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength/high modulus materials , 1987 .

[49]  R. Marchelli,et al.  Chiral aminoacid containing acyclic ligands-I. Syntheses and conformations , 1982 .

[50]  M. Shaw Melt characterization of ultra high molecular weight polyethylene using squeeze flow , 1977 .

[51]  L. Mandelkern,et al.  The Glass Temperature of Linear Polyethylene , 1970 .