The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry.

Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution.

[1]  J. Oró,et al.  Direct synthesis of polypeptides. I. Polycondensation of glycine in aqueous ammonia. , 1961, Archives of biochemistry and biophysics.

[2]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[3]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[4]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[5]  E. Peltzer,et al.  α-Hydroxycarboxylic acids in the Murchison meteorite , 1978, Nature.

[6]  A. Penzias,et al.  Observations of /sup 14/N//sup 15/N in the galactic disk , 1981 .

[7]  David W. Deamer,et al.  Boundary structures are formed by organic components of the Murchison carbonaceous chondrite , 1985, Nature.

[8]  M. Schulte,et al.  Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons , 1990, Nature.

[9]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[10]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[11]  Everett L. Shock,et al.  Stability of peptides in high-temperature aqueous solutions , 1992 .

[12]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[13]  E. Oelkers,et al.  SUPCRT92 - A SOFTWARE PACKAGE FOR CALCULATING THE STANDARD MOLAL THERMODYNAMIC PROPERTIES OF MINERALS, GASES, AQUEOUS SPECIES, AND REACTIONS FROM 1-BAR TO 5000-BAR AND 0-DEGREES-C TO 1000-DEGREES-C , 1992 .

[14]  E. Shock Chemical environments of submarine hydrothermal systems. , 1992, Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life.

[15]  E. Oelkers,et al.  Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar , 1992 .

[16]  Everett L. Shock,et al.  Hydrothermal dehydration of aqueous organic compounds , 1993 .

[17]  M. Schulte,et al.  Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. , 1993, Geochimica et cosmochimica acta.

[18]  R. L. Leonard,et al.  Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization. , 1995, Planetary and space science.

[19]  J. Cronin,et al.  Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. , 1995, Geochimica et cosmochimica acta.

[20]  T. Brill,et al.  SPECTROSCOPY OF HYDROTHERMAL REACTIONS. 5. DECARBOXYLATION KINETICS OF MALONIC ACID AND MONOSODIUM MALONATE , 1996 .

[21]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[22]  M. Schulte,et al.  Organic synthesis during fluid mixing in hydrothermal systems , 1998 .

[23]  J. Amend,et al.  Energetics of amino acid synthesis in hydrothermal ecosystems. , 1998, Science.

[24]  M. Schulte,et al.  The Emergence of Metabolism from Within Hydrothermal Systems , 1998 .

[25]  A. Brack,et al.  Elongation of oligopeptides in a simulated submarine hydrothermal system. , 1999, Science.

[26]  J. Amend,et al.  The Early Earth vs. the Origin of Life , 2000 .

[27]  Alexander G. G. M. Tielens,et al.  Doubly Deuterated Molecular Species in Protostellar Environments , 2001 .

[28]  S. Pizzarello,et al.  Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorites , 2001 .

[29]  Everett L. Shock,et al.  Energetics of Overall Metabolic Reactions of Thermophilic and Hyperthermophilic Archaea and Bacteria , 2001 .

[30]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[31]  S. Charnley,et al.  The End of Interstellar Chemistry as the Origin of Nitrogen in Comets and Meteorites , 2002 .

[32]  T. Brill,et al.  Spectroscopy of Hydrothermal Reactions. 27. Simultaneous Determination of Hydrolysis Rate Constants of Glycylglycine to Glycine and Glycylglycine−Diketopiperazine Equilibrium Constants at 310−330 °C and 275 bar , 2003 .

[33]  M. Gerin,et al.  Deuterium in Molecules of the Interstellar Medium , 2003 .

[34]  Michael E. Zolensky,et al.  Nonracemic isovaline in the Murchison meteorite : Chiral distribution and mineral association , 2003 .

[35]  K. Matsuno,et al.  Prebiotic Oligomerization on or Inside Lipid Vesicles in Hydrothermal Environments , 2002, Origins of life and evolution of the biosphere.

[36]  S. Pizzarello,et al.  Prebiotic Amino Acids as Asymmetric Catalysts , 2004, Science.

[37]  K. Matsuno,et al.  Autocatalytic Synthesis of Oligoglycine in a Simulated Submarine Hydrothermal System , 1999, Origins of life and evolution of the biosphere.

[38]  S. Charnley,et al.  Interstellar diazenylium recombination and nitrogen isotopic fractionation , 2004 .

[39]  K. Horikoshi,et al.  Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions , 2002, Origins of life and evolution of the biosphere.

[40]  R. Ogasawara,et al.  Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites , 2002, Origins of life and evolution of the biosphere.

[41]  C. Toniolo,et al.  Meteoritic Cα‐Methylated α‐Amino Acids and the Homochirality of Life: Searching for a Link , 2004 .

[42]  L. Orgel,et al.  Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides , 2004, Science.

[43]  Harold C. Urey,et al.  Origin of organic compounds on the primitive earth and in meteorites , 1976, Journal of Molecular Evolution.

[44]  E. Shock Geochemical constraints on the origin of organic compounds in hydrothermal systems , 1990, Origins of life and evolution of the biosphere.

[45]  S. Pizzarello,et al.  The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors , 2005 .

[46]  Teruyuki Nishi,et al.  Consecutive elongation of alanine oligopeptides at the second time range under hydrothermal conditions using a microflow reactor system. , 2005, Journal of the American Chemical Society.

[47]  F. Crick,et al.  Directed Panspermia , 2005 .

[48]  Kenso Soai,et al.  The distribution of chiral asymmetry in meteorites: An investigation using asymmetric autocatalytic chiral sensors , 2006 .

[49]  P.Caselli,et al.  Extreme Deuteration and Hot Corinos: the Earliest Chemical Signatures of Low-Mass Star Formation , 2006, astro-ph/0603018.

[50]  S. Pizzarello,et al.  The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution , 2006, Proceedings of the National Academy of Sciences.

[51]  G. Cody,et al.  The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions , 2007 .

[52]  David W. Deamer,et al.  Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products , 2007 .

[53]  A. Kearsley,et al.  The labelling of meteoritic organic material using osmium tetroxide vapour impregnation , 2007 .

[54]  S. Pizzarello,et al.  Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite , 2008, Proceedings of the National Academy of Sciences.

[55]  K. Kawamura,et al.  One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments , 2008, Naturwissenschaften.

[56]  S. Charnley,et al.  Nitrogen superfractionation in dense cloud cores , 2008, 0802.1940.

[57]  A. D. Aubrey,et al.  An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems , 2009, Origins of Life and Evolution of Biospheres.

[58]  R. Rosenbauer,et al.  Peptide synthesis in early Earth hydrothermal systems. , 2009, Astrobiology.

[59]  S. Pizzarello,et al.  Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules , 2009 .

[60]  S. Pizzarello,et al.  Stereoselective Syntheses of Pentose Sugars Under Realistic Prebiotic Conditions , 2010, Origins of Life and Evolution of Biospheres.

[61]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[62]  A. Canillas,et al.  Chiral Biases in Solids by Effect of Shear Gradients: A Speculation on the Deterministic Origin of Biological Homochirality , 2009, Origins of Life and Evolution of Biospheres.

[63]  E. Shock,et al.  The Potential for Abiotic Organic Synthesis and Biosynthesis at Seafloor Hydrothermal Systems , 2010 .

[64]  A. Lazcano Historical development of origins research. , 2010, Cold Spring Harbor perspectives in biology.

[65]  C. Fradin,et al.  ETTORE MAJORANA FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE , 2010 .

[66]  D. Deamer,et al.  Bioenergetics and life's origins. , 2010, Cold Spring Harbor perspectives in biology.