Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT

We present a fast and accurate algorithm for the evaluation of nonlocal (long-range) Coulomb and dipole-dipole interactions in free space. The governing potential is simply the convolution of an interaction kernel $U(\mathbf{x})$ and a density function $\rho(\mathbf{x})=|\psi(\mathbf{x})|^2$ for some complex-valued wave function $\psi(\mathbf{x})$, permitting the formal use of Fourier methods. These are hampered by the fact that the Fourier transform of the interaction kernel $\widehat{U}(\mathbf{k})$ has a singularity and/or $\widehat{\rho}(\mathbf{k})\ne0$ at the origin $\mathbf{k}={\bf 0}$ in Fourier (phase) space. Thus, accuracy is lost when using a uniform Cartesian grid in $\mathbf{k}$ which would otherwise permit the use of the FFT for evaluating the convolution. Here, we make use of a high-order discretization of the Fourier integral, accelerated by the nonuniform fast Fourier transform (NUFFT). By adopting spherical and polar phase-space discretizations in three and two dimensions, respectively, ...

[1]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[2]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[3]  Weizhu Bao,et al.  Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates , 2012, 1201.6176.

[4]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[5]  L. Greengard,et al.  The type 3 nonuniform FFT and its applications June - , 2005 .

[6]  Martin Kiffner,et al.  Magnetic monopoles and synthetic spin-orbit coupling in Rydberg macrodimers. , 2013, Physical review letters.

[7]  Weizhu Bao,et al.  Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..

[8]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[9]  Weizhu Bao,et al.  Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .

[10]  Martin Kiffner,et al.  Dipole-Dipole coupled double Rydberg molecules , 2012, 1205.4602.

[11]  Scott B. Baden,et al.  A scalable parallel Poisson solver in three dimensions with infinite-domain boundary conditions , 2005, 2005 International Conference on Parallel Processing Workshops (ICPPW'05).

[12]  P B Blakie,et al.  Numerical method for evolving the dipolar projected Gross-Pitaevskii equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  R. A. James,et al.  The solution of Poisson''s equation for isolated source distributions , 1977 .

[14]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[15]  Anna-Karin Tornberg,et al.  Spectral accuracy in fast Ewald-based methods for particle simulations , 2011, J. Comput. Phys..

[16]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[17]  V. Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data, II , 1995 .

[18]  Hermann Haken,et al.  Molecular physics and elements of quantum chemistry , 1995 .

[19]  Claudia Eberlein,et al.  Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions , 2006, cond-mat/0608316.

[20]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  Baowen Li,et al.  Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential , 2009 .

[23]  Weizhu Bao,et al.  Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.

[24]  Yanzhi Zhang,et al.  A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..

[25]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[26]  Naoufel Ben Abdallah,et al.  The Strongly Confined Schrödinger--Poisson System for the Transport of Electrons in a Nanowire , 2009, SIAM J. Appl. Math..

[27]  Martin Kiffner,et al.  Abelian and non-Abelian gauge fields in dipole–dipole interacting Rydberg atoms , 2013, 1306.5892.

[28]  Zydrunas Gimbutas,et al.  Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..

[29]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[30]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[31]  D. Sheehy,et al.  Optical transparency of graphene as determined by the fine-structure constant , 2009, 0906.5164.

[32]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[33]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[34]  Karsten Fourmont Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .

[35]  L. You,et al.  Trapped condensates of atoms with dipole interactions , 2001 .

[36]  B. Malomed,et al.  Anisotropic solitons in dipolar bose-einstein condensates. , 2007, Physical review letters.

[37]  B. U. Felderhof,et al.  Electrostatic interactions in thin film Coulomb systems with periodic boundary conditions , 1989 .

[38]  Christof Sparber,et al.  On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.

[39]  A. M. Martin,et al.  Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.

[40]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[41]  L. Greengard,et al.  Short Note: The type 3 nonuniform FFT and its applications , 2005 .

[42]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[43]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[44]  François Golse,et al.  Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .

[45]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .

[46]  H. Pu,et al.  Vortex structures in dipolar condensates , 2006 .

[47]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..

[48]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[49]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[50]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[51]  Weizhu Bao,et al.  Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials , 2013, SIAM J. Appl. Math..

[52]  H. Pu,et al.  Phase-space deformation of a trapped dipolar Fermi gas , 2007, 0710.5223.

[53]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[54]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[55]  D. Sheehy,et al.  Quantum critical scaling in graphene. , 2007, Physical review letters.

[56]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[57]  Yong Zhang,et al.  On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system , 2011, J. Comput. Phys..

[58]  S. L. Cornish,et al.  Collapse times of dipolar Bose-Einstein condensates , 2008, 0809.4294.

[59]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[60]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[61]  Zydrunas Gimbutas,et al.  A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..

[62]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[63]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[64]  Santos,et al.  Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.

[65]  L. You,et al.  Trapped atomic condensates with anisotropic interactions , 2000 .

[66]  Stefano Giovanazzi,et al.  Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. , 2004, Physical review letters.

[67]  Anna-Karin Tornberg,et al.  Fast and spectrally accurate Ewald summation for 2-periodic electrostatic systems. , 2011, The Journal of chemical physics.

[68]  Yanzhi Zhang,et al.  A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via a rotating Lagrangian coordinate , 2013, 1305.1378.