Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT
暂无分享,去创建一个
[1] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[2] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[3] Weizhu Bao,et al. Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates , 2012, 1201.6176.
[4] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[5] L. Greengard,et al. The type 3 nonuniform FFT and its applications June - , 2005 .
[6] Martin Kiffner,et al. Magnetic monopoles and synthetic spin-orbit coupling in Rydberg macrodimers. , 2013, Physical review letters.
[7] Weizhu Bao,et al. Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..
[8] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[9] Weizhu Bao,et al. Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .
[10] Martin Kiffner,et al. Dipole-Dipole coupled double Rydberg molecules , 2012, 1205.4602.
[11] Scott B. Baden,et al. A scalable parallel Poisson solver in three dimensions with infinite-domain boundary conditions , 2005, 2005 International Conference on Parallel Processing Workshops (ICPPW'05).
[12] P B Blakie,et al. Numerical method for evolving the dipolar projected Gross-Pitaevskii equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] R. A. James,et al. The solution of Poisson''s equation for isolated source distributions , 1977 .
[14] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[15] Anna-Karin Tornberg,et al. Spectral accuracy in fast Ewald-based methods for particle simulations , 2011, J. Comput. Phys..
[16] Nathaniel E. Helwig,et al. An Introduction to Linear Algebra , 2006 .
[17] V. Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data, II , 1995 .
[18] Hermann Haken,et al. Molecular physics and elements of quantum chemistry , 1995 .
[19] Claudia Eberlein,et al. Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions , 2006, cond-mat/0608316.
[20] D. Zorin,et al. A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] Baowen Li,et al. Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential , 2009 .
[23] Weizhu Bao,et al. Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.
[24] Yanzhi Zhang,et al. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..
[25] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[26] Naoufel Ben Abdallah,et al. The Strongly Confined Schrödinger--Poisson System for the Transport of Electrons in a Nanowire , 2009, SIAM J. Appl. Math..
[27] Martin Kiffner,et al. Abelian and non-Abelian gauge fields in dipole–dipole interacting Rydberg atoms , 2013, 1306.5892.
[28] Zydrunas Gimbutas,et al. Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..
[29] Leslie Greengard,et al. Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..
[30] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[31] D. Sheehy,et al. Optical transparency of graphene as determined by the fine-structure constant , 2009, 0906.5164.
[32] A. Griesmaier,et al. Bose-Einstein condensation of chromium. , 2005, Physical review letters.
[33] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[34] Karsten Fourmont. Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .
[35] L. You,et al. Trapped condensates of atoms with dipole interactions , 2001 .
[36] B. Malomed,et al. Anisotropic solitons in dipolar bose-einstein condensates. , 2007, Physical review letters.
[37] B. U. Felderhof,et al. Electrostatic interactions in thin film Coulomb systems with periodic boundary conditions , 1989 .
[38] Christof Sparber,et al. On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.
[39] A. M. Martin,et al. Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.
[40] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[41] L. Greengard,et al. Short Note: The type 3 nonuniform FFT and its applications , 2005 .
[42] M. Lewenstein,et al. The physics of dipolar bosonic quantum gases , 2009, 0905.0386.
[43] Seo Ho Youn,et al. Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.
[44] François Golse,et al. Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .
[45] A.,et al. FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .
[46] H. Pu,et al. Vortex structures in dipolar condensates , 2006 .
[47] James Bremer,et al. A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..
[48] M. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .
[49] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[50] Vladimir Rokhlin,et al. Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .
[51] Weizhu Bao,et al. Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials , 2013, SIAM J. Appl. Math..
[52] H. Pu,et al. Phase-space deformation of a trapped dipolar Fermi gas , 2007, 0710.5223.
[53] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[54] L. Greengard,et al. Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .
[55] D. Sheehy,et al. Quantum critical scaling in graphene. , 2007, Physical review letters.
[56] L. Greengard,et al. A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.
[57] Yong Zhang,et al. On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system , 2011, J. Comput. Phys..
[58] S. L. Cornish,et al. Collapse times of dipolar Bose-Einstein condensates , 2008, 0809.4294.
[59] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[60] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[61] Zydrunas Gimbutas,et al. A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..
[62] Bradley K. Alpert,et al. Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..
[63] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[64] Santos,et al. Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.
[65] L. You,et al. Trapped atomic condensates with anisotropic interactions , 2000 .
[66] Stefano Giovanazzi,et al. Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. , 2004, Physical review letters.
[67] Anna-Karin Tornberg,et al. Fast and spectrally accurate Ewald summation for 2-periodic electrostatic systems. , 2011, The Journal of chemical physics.
[68] Yanzhi Zhang,et al. A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via a rotating Lagrangian coordinate , 2013, 1305.1378.