Stereo matching with nonparametric smoothness priors in feature space

We propose a novel formulation of stereo matching that considers each pixel as a feature vector. Under this view, matching two or more images can be cast as matching point clouds in feature space. We build a nonparametric depth smoothness model in this space that correlates the image features and depth values. This model induces a sparse graph that links pixels with similar features, thereby converting each point cloud into a connected network. This network defines a neighborhood system that captures pixel grouping hierarchies without resorting to image segmentation. We formulate global stereo matching over this neighborhood system and use graph cuts to match pixels between two or more such networks. We show that our stereo formulation is able to recover surfaces with different orders of smoothness, such as those with high-curvature details and sharp discontinuities. Furthermore, compared to other single-frame stereo methods, our method produces more temporally stable results from videos of dynamic scenes, even when applied to each frame independently.

[1]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Ian Reid,et al.  Global stereo reconstruction under second order smoothness priors , 2008, CVPR.

[4]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[5]  Christopher Joseph Pal,et al.  Learning Conditional Random Fields for Stereo , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[7]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[8]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[10]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[11]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[13]  Olga Veksler,et al.  Stereo correspondence by dynamic programming on a tree , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Li Xu,et al.  Stereo Matching: An Outlier Confidence Approach , 2008, ECCV.

[15]  Michael J. Black,et al.  Efficient Belief Propagation with Learned Higher-Order Markov Random Fields , 2006, ECCV.

[16]  Bo Thiesson,et al.  Image and Video Segmentation by Anisotropic Kernel Mean Shift , 2004, ECCV.

[17]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[18]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[19]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[23]  Steven W. Zucker,et al.  Surface Geometric Constraints for Stereo in Belief Propagation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[25]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[26]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[27]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[30]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Antonio Torralba,et al.  Shape Recipes: Scene Representations that Refer to the Image , 2010, NIPS.

[32]  T. Kanade,et al.  Kernel correlation as an affinity measure in point-sampled vision problems , 2003 .

[33]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Hai Tao,et al.  Dynamic depth recovery from multiple synchronized video streams , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[36]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[38]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .