On the existence of an equivalent supermartingale density for a fork-convex family of stochastic processes

AbstractWe prove that a fork-convex family $$ \mathbb{W} $$ of nonnegative stochastic processes has an equivalent supermartingale density if and only if the setH of nonnegative random variables majorized by the values of elements of $$ \mathbb{W} $$ at fixed instants of time is bounded in probability. A securities market model with arbitrarily many main risky assets, specified by the set $$ \mathbb{W}\left( \mathbb{S} \right) $$ of nonnegative stochastic integrals with respect to finite collections of semimartingales from an arbitrary indexed family S, satisfies the assumptions of this theorem.

[1]  J. Doob Stochastic processes , 1953 .

[2]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[3]  I. Karatzas,et al.  Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.

[4]  Y. Kabanov,et al.  Remarks on the true No-arbitrage Property , 2005 .

[5]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[6]  M. Pratelli A Minimax Theorem Without Compactness Hypothesis , 2005 .

[7]  Y. Kabanov,et al.  Large financial markets : asymptotic arbitrage and contiguity , 1995 .

[8]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[9]  Paolo Guasoni,et al.  Super-replication and utility maximization in large financial markets , 2005 .

[10]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[11]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[12]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[13]  M. Émery,et al.  Séminaire de Probabilités XXXVIII , 2005 .

[14]  Yuri Kabanov,et al.  Asymptotic arbitrage in large financial markets , 1998, Finance Stochastics.

[15]  Kasper Larsen,et al.  No Arbitrage and the Growth Optimal Portfolio , 2007 .

[16]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[17]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[18]  David Heath,et al.  Local volatility function models under a benchmark approach , 2006 .

[19]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[20]  Gordan Žitković,et al.  A Filtered Version of the Bipolar Theorem of Brannath and Schachermayer , 2007, 0706.0049.