On the existence of an equivalent supermartingale density for a fork-convex family of stochastic processes
暂无分享,去创建一个
[1] J. Doob. Stochastic processes , 1953 .
[2] D. Heath,et al. A Benchmark Approach to Quantitative Finance , 2006 .
[3] I. Karatzas,et al. Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.
[4] Y. Kabanov,et al. Remarks on the true No-arbitrage Property , 2005 .
[5] Dirk Becherer. The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.
[6] M. Pratelli. A Minimax Theorem Without Compactness Hypothesis , 2005 .
[7] Y. Kabanov,et al. Large financial markets : asymptotic arbitrage and contiguity , 1995 .
[8] Constantinos Kardaras,et al. The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.
[9] Paolo Guasoni,et al. Super-replication and utility maximization in large financial markets , 2005 .
[10] W. Schachermayer,et al. The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .
[11] Walter Schachermayer,et al. The Mathematics of Arbitrage , 2006 .
[12] F. Delbaen,et al. A general version of the fundamental theorem of asset pricing , 1994 .
[13] M. Émery,et al. Séminaire de Probabilités XXXVIII , 2005 .
[14] Yuri Kabanov,et al. Asymptotic arbitrage in large financial markets , 1998, Finance Stochastics.
[15] Kasper Larsen,et al. No Arbitrage and the Growth Optimal Portfolio , 2007 .
[16] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[17] F. Delbaen,et al. The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .
[18] David Heath,et al. Local volatility function models under a benchmark approach , 2006 .
[19] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[20] Gordan Žitković,et al. A Filtered Version of the Bipolar Theorem of Brannath and Schachermayer , 2007, 0706.0049.