Best-First Utility-Guided Search

In many shortest-path problems of practical interest, insufficient time is available to find a provably optimal solution. One can only hope to achieve a balance between search time and solution cost that respects the user's preferences, expressed as a utility function over time and cost. Current stateof-the-art approaches to this problem rely on anytime algorithms such as Anytime A* or ARA*. These algorithms require the use of extensive training data to compute a termination policy that respects the user's utility function. We propose a more direct approach, called BUGSY, that incorporates the utility function directly into the search, obviating the need for a separate termination policy. Experiments in several challenging problem domains, including sequence alignment and temporal planning, demonstrate that this direct approach can surpass anytime algorithms without requiring expensive performance profiling.

[1]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[2]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Nils J. Nilsson,et al.  Problem-solving methods in artificial intelligence , 1971, McGraw-Hill computer science series.

[4]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[5]  Kobayashi,et al.  Improvement of the A(*) Algorithm for Multiple Sequence Alignment. , 1998, Genome informatics. Workshop on Genome Informatics.

[6]  Stuart J. Russell,et al.  Do the right thing - studies in limited rationality , 1991 .

[7]  Simon Parsons,et al.  Do the right thing - studies in limited rationality by Stuart Russell and Eric Wefald, MIT Press, Cambridge, MA, £24.75, ISBN 0-262-18144-4 , 1994, The Knowledge Engineering Review.

[8]  W. W. Bledsoe,et al.  Review of "Problem-Solving Methods in Artificial Intelligence by Nils J. Nilsson", McGraw-Hill Pub. , 1971, SGAR.

[9]  Stuart J. Russell,et al.  Do the right thing , 1991 .

[10]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[11]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[12]  Shlomo Zilberstein,et al.  Anytime Heuristic Search: First Results , 1997 .

[13]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[14]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[15]  Rina Dechter,et al.  The optimality of A , 1988 .

[16]  Eric A. Hansen,et al.  Multiple sequence alignment using anytime A* , 2002, AAAI/IAAI.

[17]  Eric A. Hansen,et al.  Breadth-first heuristic search , 2004, Artif. Intell..

[18]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[19]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[20]  Hector Geffner,et al.  Heuristic Planning with Time and Resources , 2014 .

[21]  Judea Pearl,et al.  Studies in Semi-Admissible Heuristics , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Richard E. Korf,et al.  Comparing Best-First Search and Dynamic Programming for Optimal Multiple Sequence Alignment , 2003, IJCAI.

[23]  S. Zilberstein,et al.  Anytime Heuristic Searc: First Results TITLE2: , 1997 .