Optical spatial mode sorter of azimuthal and radial components

Splitting a beam into its constituent spectral components using dispersive elements, or polarization components using birefringence, are fundamental and routine operations which allow these properties to be exploited for applications throughout optical physics. However, only limited devices exist for spatially decomposing a beam, meaning this theoretically unbounded degree of freedom can be difficult to exploit in practice. Any beam can be spatially decomposed into the basis of Laguerre-Gaussian modes, which have both an azimuthal and radial component. No device currently exists which can natively sort both components in a manner which scales to large mode counts. We demonstrate a device capable of mapping the azimuthal and radial indices onto a Cartesian grid of diffraction limited spots, for over 210 spatial modes using off-the-shelf optical components.

[1]  Robert W Boyd,et al.  Near-perfect sorting of orbital angular momentum and angular position states of light. , 2012, Optics express.

[2]  S. Barnett,et al.  Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. , 2004, Physical review letters.

[3]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[4]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[5]  Thomas Kaiser,et al.  Complete modal decomposition for optical fibers using CGH-based correlation filters. , 2009, Optics express.

[6]  J. R. Salazar-Gil,et al.  Mode-selective photonic lanterns for space-division multiplexing. , 2014, Optics express.

[7]  Eugeny Abramochkin,et al.  Generalized Gaussian beams , 2004 .

[8]  Joseph M. Kahn,et al.  Capacity limits of spatially multiplexed free-space communication , 2015 .

[9]  Mario Krenn,et al.  Physical meaning of the radial index of Laguerre-Gauss beams , 2015, 2017 Conference on Lasers and Electro-Optics (CLEO).

[10]  R. W. Lawrence,et al.  Digital Image Formation From Electronically Detected Holograms , 1967 .

[11]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[12]  Andrew Forbes,et al.  Simultaneous entanglement swapping of multiple orbital angular momentum states of light , 2016, Nature Communications.

[13]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[14]  Eldad Bahat Treidel,et al.  On the fringing-field effect in liquid-crystal beam-steering devices. , 2004, Applied optics.

[15]  T. Hashimoto,et al.  New Optical Waveguide Design Based on Wavefront Matching Method , 2007, Journal of Lightwave Technology.

[16]  Jochen Schröder,et al.  Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre , 2015, Nature Photonics.

[17]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[18]  S. Randel,et al.  Characterization of space-division multiplexing systems using a swept-wavelength interferometer , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[19]  Jochen Schröder,et al.  Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber. , 2016, Optics letters.

[20]  N. Treps,et al.  Entangling the Spatial Properties of Laser Beams , 2008, Science.

[21]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[22]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[23]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Anton Zeilinger,et al.  The Forgotten Quantum Number: A short note on the radial modes of Laguerre-Gauss beams , 2013 .

[26]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[27]  Haoshuo Chen,et al.  30×30 MIMO transmission over 15 spatial modes , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[28]  Eli Yablonovitch,et al.  Adjoint shape optimization applied to electromagnetic design. , 2013, Optics express.

[29]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[30]  Johannes Courtial,et al.  Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states , 2013 .

[31]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[32]  Johannes Courtial,et al.  Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes , 1999 .

[33]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[34]  B Y Gu,et al.  Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. , 1994, Applied optics.

[35]  Brian Robertson,et al.  Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device. , 2015, Applied optics.

[36]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[37]  Andrew Forbes,et al.  Efficient sorting of Bessel beams. , 2013, Optics express.

[38]  Ebrahim Karimi,et al.  Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference , 2014 .

[39]  Jochen Schröder,et al.  Reconfigurable spatially-diverse optical vector network analyzer. , 2014, Optics express.

[40]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[41]  Haoshuo Chen,et al.  Design of High Order Mode-Multiplexers using Multiplane Light Conversion , 2017, 2017 European Conference on Optical Communication (ECOC).

[42]  Robert W Boyd,et al.  Sorting Photons by Radial Quantum Number. , 2017, Physical review letters.

[43]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[44]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Ebrahim Karimi,et al.  Radial coherent and intelligent states of paraxial wave equation. , 2012, Optics letters.

[46]  Jean-Francois Morizur,et al.  Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion , 2014 .

[47]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[48]  J. O'Brien,et al.  Universal linear optics , 2015, Science.