Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light

[1]  Shujuan Zhang,et al.  Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline , 2009 .

[2]  M. Paganini,et al.  Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light” , 2009 .

[3]  Vyacheslav N. Kuznetsov,et al.  On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments , 2009 .

[4]  K. Hashimoto,et al.  Enhancement of visible light-induced hydrophilicity on nitrogen and sulfur-codoped TiO2 thin films , 2008 .

[5]  Kangnian Fan,et al.  One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol , 2008 .

[6]  G. Pacchioni,et al.  Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N−F Codoping of TiO2 , 2008 .

[7]  Xiujian Zhao,et al.  Low-temperature preparation and visible-light-induced catalytic activity of anatase F–N-codoped TiO2 , 2007 .

[8]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[9]  D. Barreca,et al.  TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications , 2007 .

[10]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[11]  Jinlong Zhang,et al.  Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity , 2007 .

[12]  S. Liao,et al.  Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method , 2006 .

[13]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[14]  M. Anpo,et al.  Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. , 2006, The journal of physical chemistry. B.

[15]  ChenFeng,et al.  Carbon and Nitrogen-codoped TiO2 with High Visible Light Photocatalytic Activity , 2006 .

[16]  Jinlong Zhang,et al.  Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+ , 2006 .

[17]  Balasubramanian Viswanathan,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst , 2005 .

[18]  M. Payne,et al.  New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. , 2005, The journal of physical chemistry. B.

[19]  Hajime Haneda,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization , 2005 .

[20]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[21]  M. S. Hegde,et al.  Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method , 2004 .

[22]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[23]  S. Rodrigues,et al.  Structural defects cause TiO2-based photocatalysts to be active in visible light. , 2004, Chemical communications.

[24]  C. Burda,et al.  Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles , 2004 .

[25]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[26]  Ryuhei Nakamura,et al.  Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes , 2004 .

[27]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[28]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[29]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[30]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[31]  K. Hashimoto,et al.  Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. , 2003, Chemical communications.

[32]  S. Yamamoto,et al.  Fluorine-doping in titanium dioxide by ion implantation technique , 2003 .

[33]  Kangnian Fan,et al.  Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. , 2003, Chemical communications.

[34]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[35]  Y. Nosaka,et al.  Properties of O2.- and OH. formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions , 2002 .

[36]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[37]  C. Minero,et al.  Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide−Fluoride System† , 2000 .

[38]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[39]  A. Fujishima,et al.  Quantum yields of active oxidative species formed on TiO2 photocatalyst , 2000 .

[40]  Claudio Minero,et al.  Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide−Fluoride System , 2000 .

[41]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[42]  J. Tauc,et al.  Absorption edge and internal electric fields in amorphous semiconductors , 1970 .