Superconvergence Postprocessing for Eigenvalues
暂无分享,去创建一个
[1] Edriss S. Titi,et al. An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations , 1999, Math. Comput..
[2] Ivo Babuška,et al. Lectures on mathematical foundations of the finite element method. , 1972 .
[3] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[4] Claes Johnson,et al. Computational Differential Equations , 1996 .
[5] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[6] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[7] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[8] T. Strouboulis,et al. Validation of recipes for the recovery of stresses and derivatives by a computer-based approach , 1994 .
[9] Andrey B. Andreev,et al. Superconvergence of the gradient for quadratic triangular finite elements , 1988 .
[10] Bosco Garc,et al. Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .
[11] G. Folland. Introduction to Partial Differential Equations , 1976 .
[12] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[13] A McRobie,et al. The post-processed Galerkin method applied to non-linear shell vibrations , 1999 .
[14] Edriss S. Titi,et al. Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .
[15] R. Verfürth. A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .
[16] Ian H. Sloan,et al. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .
[17] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[18] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[19] J. McWhirter. Variational Methods in Mathematics, Science and Engineering , 1978 .
[20] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .
[21] John R. Whiteman,et al. A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations , 1989 .
[22] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[23] Boris P. Belinskiy,et al. Eigenoscillations of mechanical systems with boundary conditions containing the frequency , 1998 .
[24] Pekka Neittaanmäki,et al. Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .
[25] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems , 1994 .
[26] Mathematiques Appliquees,et al. THE SPECTRAL APPROXIMATION OF LINEAR OPERATORS WITH APPLICATIONS TO THE COMPUTATION OF EIGENELEMENTS OF DIFFERENTIAL AND INTEGRAL OPERATORS , 1981 .
[27] Richard S. Varga,et al. Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions , 1972 .
[28] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .