Superconvergence Postprocessing for Eigenvalues

Abstract The main goal of this paper is to present a new strategy of increasing the convergence rate for the numerical solution of the linear finite element eigenvalue problems. This is done by introducing a postprocessing technique for eigenvalues. The postprocessing technique deals with solving a corresponding linear elliptic problem. We prove that the proposed algorithm has the superconvergence property of the eigenvalues and this improvement is attained at a small computational cost. Thus, good finite element approximations for eigenvalues are obtained on the coarse mesh. The numerical examples presented and discussed here show that the resulting postprocessing method is computationally more efficient than the method to which it is applied.

[1]  Edriss S. Titi,et al.  An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations , 1999, Math. Comput..

[2]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[3]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[4]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[5]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[6]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  T. Strouboulis,et al.  Validation of recipes for the recovery of stresses and derivatives by a computer-based approach , 1994 .

[9]  Andrey B. Andreev,et al.  Superconvergence of the gradient for quadratic triangular finite elements , 1988 .

[10]  Bosco Garc,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .

[11]  G. Folland Introduction to Partial Differential Equations , 1976 .

[12]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[13]  A McRobie,et al.  The post-processed Galerkin method applied to non-linear shell vibrations , 1999 .

[14]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .

[15]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[16]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[17]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[18]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[19]  J. McWhirter Variational Methods in Mathematics, Science and Engineering , 1978 .

[20]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[21]  John R. Whiteman,et al.  A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations , 1989 .

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  Boris P. Belinskiy,et al.  Eigenoscillations of mechanical systems with boundary conditions containing the frequency , 1998 .

[24]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[25]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[26]  Mathematiques Appliquees,et al.  THE SPECTRAL APPROXIMATION OF LINEAR OPERATORS WITH APPLICATIONS TO THE COMPUTATION OF EIGENELEMENTS OF DIFFERENTIAL AND INTEGRAL OPERATORS , 1981 .

[27]  Richard S. Varga,et al.  Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions , 1972 .

[28]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .