Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution.

Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation.

[1]  Thomas Walker,et al.  Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti , 2009, BMC Genomics.

[2]  Sean R. Eddy,et al.  Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.

[3]  D. Rio,et al.  Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. , 1995, Genes & development.

[4]  R. Lapointe,et al.  In vitro integration of an ichnovirus genome segment into the genomic DNA of lepidopteran cells. , 2007, The Journal of general virology.

[5]  M. Batzer,et al.  Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Yoichi Ishida,et al.  Transposable elements and an epigenetic basis for punctuated equilibria , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[8]  Min Han,et al.  Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice , 2005, Cell.

[9]  N. Okada,et al.  SINEs of speciation: tracking lineages with retroposons. , 2004, Trends in ecology & evolution.

[10]  J. Boeke,et al.  An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.

[11]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[12]  J. Volff Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  B. Haas,et al.  Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps , 2008, Genome Biology.

[14]  B. Webb,et al.  Perspectives on polydnavirus origins and evolution. , 2002, Advances in virus research.

[15]  D. Hickey Selfish DNA: a sexually-transmitted nuclear parasite. , 1982, Genetics.

[16]  D. Hartl,et al.  Modern thoughts on an ancyent marinere: function, evolution, regulation. , 1997, Annual review of genetics.

[17]  Eric Bapteste,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Pattern pluralism and the Tree of Life hypothesis , 2007 .

[18]  Laura S. Frost,et al.  Mobile genetic elements: the agents of open source evolution , 2005, Nature Reviews Microbiology.

[19]  P. Capy,et al.  The First Steps of Transposable Elements Invasion , 2005, Genetics.

[20]  T. Heidmann,et al.  Taming of transposable elements by homology-dependent gene silencing , 1999, Nature Genetics.

[21]  I. Arkhipova,et al.  A Single-Copy IS5-Like Transposon in the Genome of a Bdelloid Rotifer , 2009, Molecular biology and evolution.

[22]  Claudia M. A. Carareto,et al.  Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus Drosophila , 2009, BMC Evolutionary Biology.

[23]  Keith R. Oliver,et al.  Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  Ronald H. A. Plasterk,et al.  Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi , 2003, Nature.

[25]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[26]  Arnaud Le Rouzic,et al.  Long-term evolution of transposable elements , 2007, Proceedings of the National Academy of Sciences.

[27]  M. Freeling,et al.  Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. , 1995, The Plant cell.

[28]  Keith M. Derbyshire,et al.  The outs and ins of transposition: from Mu to Kangaroo , 2003, Nature Reviews Molecular Cell Biology.

[29]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[30]  S. Martin,et al.  Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Feschotte Merlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences. , 2004, Molecular biology and evolution.

[32]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[33]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[34]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[35]  P. Bennett,et al.  ISCR Elements: Novel Gene-Capturing Systems of the 21st Century? , 2006, Microbiology and Molecular Biology Reviews.

[36]  E. Ostertag,et al.  L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. , 2009, Genes & development.

[37]  Z. Tu,et al.  Possible horizontal transfer of a transposable element from host to parasitoid. , 2001, Molecular biology and evolution.

[38]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[39]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[40]  S. W. Emmons,et al.  High-frequency excision of transposable element Tc1 in the nematode caenorhabditis elegans is limited to somatic cells , 1984, Cell.

[41]  Xabier Bello,et al.  Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes , 2008, Genome Biology.

[42]  D. Kordis,et al.  Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Feschotte,et al.  A role for host–parasite interactions in the horizontal transfer of transposons across phyla , 2010, Nature.

[44]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[45]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[46]  S. Boissinot,et al.  Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. , 2010, Gene.

[47]  POPULATION GENETICS MODELS OF TRANSPOSABLE ELEMENTS , 1997 .

[48]  M. Stroun,et al.  Alu Repeat Sequences Are Present in Increased Proportions Compared to a Unique Gene in Plasma/Serum DNA , 2001, Annals of the New York Academy of Sciences.

[49]  M. Morgante,et al.  Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize , 2005, Nature Genetics.

[50]  Eduardo P C Rocha,et al.  Causes of insertion sequences abundance in prokaryotic genomes. , 2007, Molecular biology and evolution.

[51]  S. Carroll,et al.  Deep homology and the origins of evolutionary novelty , 2009, Nature.

[52]  M. G. Kidwell Horizontal transfer of P elements and other short inverted repeat transposons , 2004, Genetica.

[53]  R. Plasterk,et al.  Resident aliens: the Tc1/mariner superfamily of transposable elements. , 1999, Trends in genetics : TIG.

[54]  Alexander Emelyanov,et al.  Trans-Kingdom Transposition of the Maize Dissociation Element , 2006, Genetics.

[55]  T. Eickbush,et al.  The diversity of retrotransposons and the properties of their reverse transcriptases. , 2008, Virus research.

[56]  D. Kordis,et al.  Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. , 2001, Molecular biology and evolution.

[57]  M. Summers,et al.  Acquisition of Host Cell DNA Sequences by Baculoviruses: Relationship Between Host DNA Insertions and FP Mutants of Autographa californica and Galleria mellonella Nuclear Polyhedrosis Viruses , 1983, Journal of virology.

[58]  M. Pardue,et al.  Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. , 2003, Annual review of genetics.

[59]  Ellen J. Pritham Transposable elements and factors influencing their success in eukaryotes. , 2009, The Journal of heredity.

[60]  S. Boissinot,et al.  L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. , 2004, Trends in genetics : TIG.

[61]  J. Werren,et al.  MODES OF ACQUISITION OF WOLBACHIA: HORIZONTAL TRANSFER, HYBRID INTROGRESSION, AND CODIVERGENCE IN THE NASONIA SPECIES COMPLEX , 2009, Evolution; international journal of organic evolution.

[62]  S. Henikoff,et al.  Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. , 2000, Genome research.

[63]  L. J. Johnson Selfish Genetic Elements Favor The Evolution of a Distinction Between Soma and Germline , 2008, Evolution; international journal of organic evolution.

[64]  B. Charlesworth,et al.  High rate of horizontal transfer of transposable elements in Drosophila. , 2005, Trends in genetics : TIG.

[65]  T. Eickbush,et al.  The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus , 2009, PLoS genetics.

[66]  M. Houck,et al.  Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis , 1991, Science.

[67]  R M May,et al.  Epidemiology and genetics in the coevolution of parasites and hosts , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[68]  D. Anxolabéhère,et al.  The strange phylogenies of transposable elements: are horizontal transfers the only explantation? , 1994, Trends in genetics : TIG.

[69]  F. Bushman Targeting Survival Integration Site Selection by Retroviruses and LTR-Retrotransposons , 2003, Cell.

[70]  H. Robertson Evolution of DNA Transposons in Eukaryotes , 2002 .

[71]  N. Okada,et al.  Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals , 2007, Proceedings of the National Academy of Sciences.

[72]  D. Petrov,et al.  The adaptive role of transposable elements in the Drosophila genome. , 2009, Gene.

[73]  S. Takagi,et al.  The Tol1 element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans , 2008, Heredity.

[74]  S. Schaeffer,et al.  The ornithine decarboxylase gene of Trypanosoma brucei: Evidence for horizontal gene transfer from a vertebrate source. , 2006, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[75]  M. Nissen,et al.  Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome , 1990, Molecular and cellular biology.

[76]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[77]  J. Galagan,et al.  RIP: the evolutionary cost of genome defense. , 2004, Trends in genetics : TIG.

[78]  Jonathan B. Clark,et al.  Factors that affect the horizontal transfer of transposable elements. , 2004, Current issues in molecular biology.

[79]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[80]  P. Capy,et al.  Revisiting horizontal transfer of transposable elements in Drosophila , 2008, Heredity.

[81]  H. Möller,et al.  Evolution of prokaryotic SPFH proteins , 2009, BMC Evolutionary Biology.

[82]  D. Anxolabéhère,et al.  Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. , 1988, Molecular biology and evolution.

[83]  M. G. Kidwell,et al.  Evidence for horizontal transmission of the P transposable element between Drosophila species. , 1990, Genetics.

[84]  D. A. Kramerov,et al.  Bov-B-mobilized SINEs in vertebrate genomes. , 2008, Gene.

[85]  B. Piégu,et al.  Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae , 2009, BMC Evolutionary Biology.

[86]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[87]  M. G. Kidwell,et al.  Horizontal transfer and selection in the evolution of P elements. , 2000, Molecular biology and evolution.

[88]  S. Richards,et al.  Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes , 2007, Science.

[89]  M. Pritchett,et al.  In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[90]  H. Levin,et al.  The Hermes Transposon of Musca domestica Is an Efficient Tool for the Mutagenesis of Schizosaccharomyces pombe , 2007, Genetics.

[91]  Eugene V Koonin,et al.  The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum , 2009, Biology Direct.

[92]  J. Mekalanos,et al.  In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[93]  C. Weil,et al.  Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae , 2000, Nature Genetics.

[94]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[95]  E. Eichler,et al.  The origins and impact of primate segmental duplications. , 2009, Trends in genetics : TIG.

[96]  J. Finnerty,et al.  Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers , 2009, BMC Evolutionary Biology.

[97]  M. Halfon,et al.  Complex organizational structure of the genome revealed by genome-wide analysis of single and alternative promoters in Drosophila melanogaster , 2009, BMC Genomics.

[98]  A. Teixeira,et al.  Inheritance of DNA Transferred from American Trypanosomes to Human Hosts , 2010, PloS one.

[99]  R. Wing,et al.  Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. , 2007, The Plant journal : for cell and molecular biology.

[100]  N. Vinckenbosch,et al.  RNA-based gene duplication: mechanistic and evolutionary insights , 2009, Nature Reviews Genetics.

[101]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[102]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[103]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[104]  J. Vlak,et al.  Horizontal Escape of the Novel Tc1-Like Lepidopteran Transposon TCp3.2 into Cydia pomonella Granulovirus , 1998, Journal of Molecular Evolution.