Benzoylurea Oligomers: Synthetic Foldamers That Mimic Extended α Helices

[1]  Andrew D. Hamilton,et al.  Development of a Potent Bcl-xL Antagonist Based on α-Helix Mimicry , 2002 .

[2]  Lloyd M. Smith,et al.  Efficient synthesis of a beta-peptide combinatorial library with microwave irradiation. , 2005, Journal of the American Chemical Society.

[3]  B. Gong,et al.  Evolution of Helical Foldamers , 2003 .

[4]  Ivan Huc,et al.  Interconversion of single and double helices formed from synthetic molecular strands , 2000, Nature.

[5]  Svetlana Litvinchuk,et al.  Blockage of Rigid-rod β-Barrel Pores with Rigid-rod α-Helix Mimics* , 2005 .

[6]  G. Sharma,et al.  A Left‐Handed 9‐Helix in γ‐Peptides: Synthesis and Conformational Studies of Oligomers with Dipeptide Repeats of C‐Linked Carbo‐γ4‐amino Acids and γ‐Aminobutyric Acid , 2006 .

[7]  K A Dill,et al.  NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[9]  J. Leger,et al.  Amphipathic helices from aromatic amino acid oligomers. , 2006, The Journal of organic chemistry.

[10]  Y. Hamuro,et al.  Novel Molecular Scaffolds: Formation of Helical Secondary Structure in a Family of Oligoanthranilamides , 1994 .

[11]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[12]  Toshiaki Hara,et al.  Probing the structural requirements of peptoids that inhibit HDM2-p53 interactions. , 2006, Journal of the American Chemical Society.

[13]  Andrew D. Hamilton,et al.  Synthesis of a 2,3‘;6‘,3‘ ‘-Terpyridine Scaffold as an α-Helix Mimetic , 2005 .

[14]  Joshua A. Kritzer,et al.  Helical β-Peptide Inhibitors of the p53-hDM2 Interaction , 2004 .

[15]  S. Sebti,et al.  Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. , 2005, Angewandte Chemie.

[16]  D. Rognan,et al.  N,N'-linked oligoureas as foldamers: chain length requirements for helix formation in protic solvent investigated by circular dichroism, NMR spectroscopy, and molecular dynamics. , 2005, Journal of the American Chemical Society.

[17]  Ivan Huc,et al.  Aromatic δ-peptides: design, synthesis and structural studies of helical, quinoline-derived oligoamide foldamers , 2003 .

[18]  A. Hamilton,et al.  Intramolecular hydrogen bonding allows simple enaminones to structurally mimic the i, i + 4, and i + 7 residues of an α-helix , 2006 .

[19]  J. Leger,et al.  Proteomorphous objects from abiotic backbones. , 2007, Angewandte Chemie.

[20]  C. Baldauf,et al.  Helix formation and folding in γ-peptides and their vinylogues , 2003 .

[21]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[22]  Stefan Matile,et al.  Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores. , 2005, Accounts of chemical research.

[23]  B. Jaun,et al.  γ2‐, γ3‐, and γ2,3,4‐Amino Acids, Coupling to γ‐Hexapeptides: CD Spectra, NMR Solution and X‐ray Crystal Structures of γ‐Peptides , 2002 .

[24]  Andrew D. Hamilton,et al.  Terphenyl-Based Bak BH3 α-Helical Proteomimetics as Low-Molecular-Weight Antagonists of Bcl-xL , 2005 .

[25]  Shaomeng Wang,et al.  Chimeric (α/β + α)-Peptide Ligands for the BH3-Recognition Cleft of Bcl-xL: Critical Role of the Molecular Scaffold in Protein Surface Recognition , 2005 .

[26]  Y. Hamuro,et al.  Functionalized oligoanthranilamides: modular and conformationally controlled scaffolds. , 2001, Bioorganic & medicinal chemistry.

[27]  Byoung-Chul Lee,et al.  Folding a nonbiological polymer into a compact multihelical structure. , 2005, Journal of the American Chemical Society.

[28]  W. Cruse 1-(4-Chlorophenyl)-3-(2,6-difluorobenzoyl)urea , 1978 .

[29]  Andrew D. Hamilton,et al.  Neue molekulare Gerüste: Bildung helicaler Sekundärstrukturen bei einer Gruppe von Oligoanthranilamiden , 1994 .

[30]  W. Antonin,et al.  Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs , 2002, Nature Structural Biology.

[31]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[32]  K. Dill,et al.  Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains. , 2003, Journal of the American Chemical Society.

[33]  S. Srinivasula,et al.  Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.