Structural and free‐volume analysis for alkyl‐substituted palladium‐catalyzed poly(norbornene): A combined experimental and Monte Carlo investigation

Increasing the length of an alkyl side chain on a rigid polynorbornene (PNB) backbone is shown to decrease the glass-transition temperature of the resultant polymer, decrease the density of the bulk polymer, decrease the number and average free-volume element size present, and decrease the permeability of gases through the polymer. Methyl-, butyl-, and hexyl-substituted PNBs were investigated. Experimental results were compared with predictions based on molecular modeling. By using models that provided good agreement between the experimental and simulated wide-angle diffraction patterns, the distributions of free-volume elements were predicted. These predictions clearly indicate that the number of large free-volume elements decreases as the length of the side chain increases, suggesting that the flexible aliphatic side chains can be largely accommodated within the free volume between the rigid PNB backbones. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 215–233, 2006

[1]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[2]  R. Simha,et al.  Ortho-positronium lifetime studies of free volume in polycarbonates of different structures: influence of hole size distributions , 1993 .

[3]  Y. Jean Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers☆ , 1990 .

[4]  S. A. Stern,et al.  Estimation of the free volume in polymers by means of a Monte Carlo technique , 1989 .

[5]  Ulrich W. Suter,et al.  Space available to small diffusants in polymeric glasses: Analysis of unoccupied space and its connectivity , 1992 .

[6]  W. Koros,et al.  Energetics of gas sorption in glassy polymers , 1979 .

[7]  P. Kohl,et al.  Thermal decomposition kinetics of functionalized polynorbornene , 2002 .

[8]  Giovanni Consolati,et al.  Positron annihilation lifetime (PAL) in poly[1‐(trimethyl‐silyl)propine] (PTMSP): Free volume determination and time dependence of permeability , 1996 .

[9]  J. Wendorff,et al.  Polynorbornene: synthesis, properties and simulations , 1996 .

[10]  W. Kaminsky,et al.  Copolymerization of norbornene and ethene with homogenous zirconocenes/methylaluminoxane catalysts , 1993 .

[11]  Lora G. Toy,et al.  Transport of organic vapors through poly(1-trimethylsilyl-1-propyne) , 1996 .

[12]  V. Volkov,et al.  A positron annihilation method of studying the microstructure of polymers in relation to their diffusional properties , 1987 .

[13]  Y. Yampolskii,et al.  Estimation of free volume in poly(trimethylsilyl propyne) by positron annihilation and electrochromism methods , 1993 .

[14]  S. Thrasher,et al.  Transport of water and methanol vapors in alkyl substituted poly(norbornene) , 2004 .

[15]  S. Jacobson Molecular modeling studies of polymeric gas separation and barrier materials: structure and transport mechanisms , 1994 .

[16]  Peter J. Ludovice,et al.  Simulation of intermediate order in polymeric glasses , 1999 .

[17]  P. Pfromm,et al.  Accelerated physical ageing of thin glassy polymer films: evidence from gas transport measurements , 1995 .

[18]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[19]  V. Volkov Free Volume Structure and Transport Properties of Glassy Polymers—Materials for Separating Membranes , 1991 .

[20]  H. Kita,et al.  Correlation between Positron Annihilation and Sorption of CO2 in Glassy Polymers , 1993 .

[21]  J. Wendorff,et al.  Rigid Random Coils: Rotationally Confined Chain Molecules , 1997 .

[22]  Peter J. Ludovice,et al.  Microstructure of 2,3 erythro di-isotactic polynorbornene from atomistic simulation , 2000 .

[23]  W. Koros,et al.  Free-Volume Hole Properties of Gas-Exposed Polycarbonate Studied by Positron Annihilation Lifetime Spectroscopy , 1996 .

[24]  P. Kohl,et al.  Development of a New Force Field for Polynorbornene , 1998 .

[25]  V. S. Subrahmanyam,et al.  Structural characteristics and gas permeation properties of polynorbornenes with retained bicyclic structure , 2001 .

[26]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[27]  Anita J. Hill,et al.  Impact of average free‐volume element size on transport in stereoisomers of polynorbornene. I. Properties at 35 °C , 2003 .

[28]  G. H. Dai,et al.  Free-volume hole distributions of polymers probed by positron annihilation spectroscopy: experiences of using the CONTIN program , 1993 .

[29]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[30]  Doros N. Theodorou,et al.  Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene , 1993 .

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[32]  G. Dai,et al.  Free-volume hole distributions of polymers by positron annihilation lifetime spectroscopy , 1993 .

[33]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[34]  P. Pfromm,et al.  Gas transport properties of a series of highTg polynorbornenes with aliphatic pendant groups , 1998 .

[35]  Y. Jean,et al.  Correlations between gas permeation and free‐volume hole properties probed by positron annihilation spectroscopy , 1995 .

[36]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[37]  V. Bondar,et al.  Synthesis, Gas Permeability, and Gas Sorption Properties of Fluorine-Containing Norbornene Polymers , 1994 .

[38]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[39]  Y. Jean Free-volume mean sizes of polymers probed by positron annihilation spectroscopy: a correlation of results obtained by PAL and by ACAR methods , 1991 .

[40]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[41]  E. M. Antipov,et al.  Transport characteristics and other physicochemical properties of aged poly (1-(trimethylsilyl)-1-propyne) , 1993 .