Fiducial Markers for Pose Estimation

[1]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[2]  Pavol Fedor,et al.  Autonomous flying with quadrocopter using fuzzy control and ArUco markers , 2017, Intell. Serv. Robotics.

[3]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[4]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[5]  Mark Fiala,et al.  Designing Highly Reliable Fiducial Markers , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Peter Hubinský,et al.  Visual Localization of Mobile Robot Using Artificial Markers , 2014 .

[7]  Andrea Torsello,et al.  Pi-Tag: a fast image-space marker design based on projective invariants , 2013, Machine Vision and Applications.

[8]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[9]  Rafael Muñoz-Salinas,et al.  Mapping and Localization from Planar Markers , 2016, Pattern Recognit..

[10]  Diego López-de-Ipiña,et al.  TRIP: A Low-Cost Vision-Based Location System for Ubiquitous Computing , 2002, Personal and Ubiquitous Computing.

[11]  Jerome Le Ny,et al.  Autonomous Landing of a Multirotor Micro Air Vehicle on a High Velocity Ground Vehicle , 2016, ArXiv.

[12]  Cuneyt Akinlar,et al.  STag: A Stable Fiducial Marker System , 2017, Image Vis. Comput..

[13]  Ioannis M. Rekleitis,et al.  A marsupial robotic system for surveying and inspection of freshwater ecosystems , 2020, J. Field Robotics.

[14]  Angelos Antonopoulos,et al.  Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm , 2016, Sensors.

[15]  Juan-Carlos Cano,et al.  Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition , 2019 .

[16]  Karsten Berns,et al.  Analysis and Improvements in AprilTag Based State Estimation , 2019, Sensors.

[17]  Alvar Saenz-Otero,et al.  Engineering Notes Relative Computer Vision-Based Navigation for Small Inspection Spacecraft , 2015 .

[18]  Marc Hanheide,et al.  An efficient visual fiducial localisation system , 2017, SIAP.

[19]  Dimos V. Dimarogonas,et al.  A robust interaction control approach for underwater vehicle manipulator systems , 2018, Annu. Rev. Control..

[20]  Nabil Aouf,et al.  Vision Based Autonomous Landing of Multirotor UAV on Moving Platform , 2017, J. Intell. Robotic Syst..

[21]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[22]  Andrea Torsello,et al.  An Accurate and Robust Artificial Marker Based on Cyclic Codes , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[24]  Thomas C. Henderson,et al.  A Survey of General- Purpose Manipulation , 1989, Int. J. Robotics Res..

[25]  Luis Felipe Gonzalez,et al.  Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments , 2016, Sensors.

[26]  Xiao Liang,et al.  Moving target tracking method for unmanned aerial vehicle/unmanned ground vehicle heterogeneous system based on AprilTags , 2020 .

[27]  Libor Preucil,et al.  A Practical Multirobot Localization System , 2014, J. Intell. Robotic Syst..