Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine

[1]  J. Ferreira,et al.  Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts , 2016 .

[2]  T. Oh,et al.  Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application , 2015 .

[3]  B. Siebers,et al.  A continuous method to prepare poorly crystalline silver-doped calcium phosphate ceramics with antibacterial properties , 2015 .

[4]  V. Kojić,et al.  Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite , 2014 .

[5]  J. Ferreira,et al.  Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. , 2014, Journal of inorganic biochemistry.

[6]  T. Kamarul,et al.  Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis , 2014 .

[7]  Nicola Maffulli,et al.  Bone regenerative medicine: classic options, novel strategies, and future directions , 2014, Journal of Orthopaedic Surgery and Research.

[8]  A. Elbaz,et al.  Patients with knee osteoarthritis demonstrate improved gait pattern and reduced pain following a non-invasive biomechanical therapy: a prospective multi-centre study on Singaporean population , 2014, Journal of Orthopaedic Surgery and Research.

[9]  A. Bandyopadhyay,et al.  Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. , 2012, Acta biomaterialia.

[10]  Amit Bandyopadhyay,et al.  Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. , 2012, Dental materials : official publication of the Academy of Dental Materials.

[11]  C. Ooi,et al.  Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles , 2010 .

[12]  E. F. da Cruz e Silva,et al.  Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. , 2010, European cells & materials.

[13]  M. Mitrić,et al.  Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders , 2010 .

[14]  M. Gazzano,et al.  Ionic substitutions in calcium phosphates synthesized at low temperature. , 2010, Acta biomaterialia.

[15]  J. Ferreira,et al.  Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. , 2010, Acta biomaterialia.

[16]  M. Bohner,et al.  Silicon-substituted calcium phosphates - a critical view. , 2009, Biomaterials.

[17]  S. Ramesh,et al.  Strontium-Doped Hydroxyapatite Nanopowder via Sol-Gel Method: Effect of Strontium Concentration and Calcination Temperature on Phase Behavior , 2009 .

[18]  K. Yamashita,et al.  The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. , 2009, Materials science & engineering. C, Materials for biological applications.

[19]  J. Ferreira,et al.  Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and beta-tricalcium phosphate) mixtures. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[20]  C. Fan,et al.  Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings , 2008, Journal of materials science. Materials in medicine.

[21]  J. Caverzasio Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. , 2008, Bone.

[22]  C. Ohtsuki,et al.  Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition , 2008, Journal of biomaterials applications.

[23]  J. Ong,et al.  Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. , 2007, Journal of biomedical materials research. Part A.

[24]  M. Bedzyk,et al.  A theoretical and experimental study of lead substitution in calcium hydroxyapatite. , 2006, Physical chemistry chemical physics : PCCP.

[25]  Gadi Borkow,et al.  Copper as a biocidal tool. , 2005, Current medicinal chemistry.

[26]  F. Miyaji,et al.  Formation and structure of zinc-substituted calcium hydroxyapatite , 2005 .

[27]  M. Vallet‐Regí,et al.  The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study , 2004 .

[28]  J. D. Baldeck,et al.  Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. , 2004, Oral microbiology and immunology.

[29]  J. P. LeGeros,et al.  Biphasic calcium phosphate bioceramics: preparation, properties and applications , 2003, Journal of materials science. Materials in medicine.

[30]  W. Fraser,et al.  Is there a potential therapeutic value of copper and zinc for osteoporosis? , 2002, Proceedings of the Nutrition Society.

[31]  D. Bernache-Assollant,et al.  Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. , 2002, Biomaterials.

[32]  N. Ichinose,et al.  Calcium level-responsive in-vitro zinc release from zinc containing tricalcium phosphate (ZnTCP). , 2000, Journal of biomedical materials research.

[33]  K. Onuma,et al.  Inhibitory Effect of Magnesium and Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face , 2000 .

[34]  D. Greenspan Bioactive ceramic implant materials , 1999 .

[35]  G. Daculsi,et al.  Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics , 1999, Journal of materials science. Materials in medicine.

[36]  W. Bonfield,et al.  Chemical characterization of silicon-substituted hydroxyapatite. , 1999, Journal of biomedical materials research.

[37]  S. Atmaca The Effect of Zinc On Microbial Growth , 1998 .

[38]  G. Daculsi,et al.  Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. , 1998, Biomaterials.

[39]  F. Cui,et al.  Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite , 1998, Journal of materials science. Materials in medicine.

[40]  María Vallet-Regí,et al.  Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compounds , 1995 .

[41]  M. Gazzano,et al.  Inhibiting effect of zinc on hydroxylapatite crystallization , 1995 .

[42]  G. H. Nancollas,et al.  A Mineralization Adsorption and Mobility Study of Hydroxyapatite Surfaces in the Presence of Zinc and Magnesium Ions , 1994 .

[43]  P. Rouxhet,et al.  Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites , 1989 .

[44]  G. Daculsi,et al.  Crystal dissolution of biological and ceramic apatites , 1989, Calcified Tissue International.

[45]  Y. Suketa,et al.  Stimulatory effect of zinc on bone formation in tissue culture. , 1987, Biochemical pharmacology.

[46]  R. Legros,et al.  Age-related changes in mineral of rat and bovine cortical bone , 1987, Calcified Tissue International.

[47]  M. Yamaguchi,et al.  Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. , 1986, Biochemical pharmacology.

[48]  R. Riggins,et al.  Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. , 1982, The Journal of nutrition.

[49]  J. Ferreira,et al.  Cosubstitution of Zinc and Strontium in β-Tricalcium Phosphate: Synthesis and Characterization , 2011 .

[50]  E. Saiz,et al.  Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. , 2010, Acta biomaterialia.

[51]  J. Ferreira,et al.  Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics , 2008 .

[52]  J. Ferreira,et al.  Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites , 2007 .

[53]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[54]  B. Sugarman,et al.  Zinc and infection. , 1983, Reviews of infectious diseases.