Some results about proper overrings of pseudo-valuation domains

Let R ⊂ S be a (unital) extension of (commutative) rings. We say that R is a maximal non-quasi-local (respectively, non-PVD) subring of S if R is not quasi-local (respectively, PVD) and each subring of S properly containing R is quasi-local (respectively, PVD). The aim of this paper is to study this kind of ring extensions and to investigate the structure of the intermediate rings between R and S.

[1]  N. Jarboui,et al.  New results about normal pairs of rings with zero-divisors , 2014 .

[2]  Ali Jaballah Graph theoretic characterizations of maximal non-valuation subrings of a field , 2013 .

[3]  Gabriel Picavet,et al.  Characterizing the ring extensions that satisfy FIP or FCP , 2012 .

[4]  Ali Jaballah MAXIMAL NON-PRÜFER AND MAXIMAL NON-INTEGRALLY CLOSED SUBRINGS OF A FIELD , 2012 .

[5]  J. Shapiro,et al.  NORMAL PAIRS WITH ZERO-DIVISORS , 2011 .

[6]  N. Jarboui,et al.  On maximal non-valuation subrings , 2011 .

[7]  N. Jarboui,et al.  Intermediary rings in normal pairs , 2008 .

[8]  Othman Echi,et al.  ON MAXIMAL NON-ACCP SUBRINGS , 2007 .

[9]  E. Houston,et al.  Arithmetic properties in pullbacks , 2007 .

[10]  N. Jarboui,et al.  Maximal Non-Noetherian Subrings of a Domain☆ , 2002 .

[11]  Othman Echi,et al.  Universally catenarian and going-down pairs of rings , 2001 .

[12]  L. Izelgue,et al.  Pairs of domains where all intermediate domains are Jaffard , 2000 .

[13]  M. Nasr,et al.  Maximal non-Jaffard subrings of a field , 2000 .

[14]  Ali Jaballah,et al.  Residually algebraic pairs of rings , 1997 .

[15]  P. Cahen Couples d'anneaux partageant un idéal , 1988 .

[16]  M. Fontana,et al.  Locally pseudo-valuation domains , 1983 .

[17]  David F. Anderson,et al.  Pairs of Rings with the Same Prime Ideals , 1980, Canadian Journal of Mathematics.

[18]  E. Houston,et al.  Pseudo-valuation domains. , 1978 .

[19]  A. Wadsworth Pairs of domains where all intermediate domains are Noetherian , 1974 .

[20]  E. Davis Overrings of commutative rings. III. Normal pairs , 1973 .

[21]  R. Gilmer,et al.  Multiplicative ideal theory , 1968 .

[22]  R. Gilmer,et al.  Intersections of quotient rings of an integral domain , 1967 .