Two novel zinc complexes of disubstituted 2,2?bipyridine with ammonium groups as artificial nucleases

[1]  F. Mancin,et al.  Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids , 2007 .

[2]  Yi-zhi Li,et al.  A trinuclear copper(II) complex of 2,4,6-tris(di-2-pyridylamine)-1,3,5-triazine shows prominent DNA cleavage activity. , 2007, Inorganic chemistry.

[3]  Yan-Yong Lin,et al.  Cleavage of double-strand DNA by zinc complexes of dicationic 2,2'-dipyridyl derivatives. , 2007, Dalton transactions.

[4]  F. Mancin,et al.  Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. , 2007, Chemistry.

[5]  Li Feng,et al.  The first dinuclear copper(II) and zinc(II) complexes containing novel Bis-TACN: syntheses, structures, and DNA cleavage activities. , 2007, Dalton transactions.

[6]  Y. Gao,et al.  A DFT study on the mechanism of phosphodiester cleavage mediated by monozinc complexes. , 2007, Journal of the American Chemical Society.

[7]  M. Tong,et al.  Double-strand DNA cleavage by copper complexes of 2,2'-dipyridyl with electropositive pendants. , 2006, Dalton transactions.

[8]  T. Chakraborty,et al.  A New S4‐Ligated Zinc–Peptide 1 : 2 Complex for the Hydrolytic Cleavage of DNA , 2006, Chemistry & biodiversity.

[9]  Nicholas H Williams,et al.  A highly reactive mononuclear Zn(II) complex for phosphodiester cleavage. , 2005, Journal of the American Chemical Society.

[10]  F. Meyer,et al.  Effect of Zn...Zn separation on the hydrolytic activity of model dizinc phosphodiesterases. , 2005, Chemistry.

[11]  Yi Lu,et al.  An asymmetric dizinc phosphodiesterase model with phenolate and carboxylate bridges. , 2005, Inorganic chemistry.

[12]  C. Madhavaiah,et al.  Biocatalysis by metallated cyclotriphosphazenes: L2Zn(NO3)2 {L = spiro-N3P3[O2C12H8][N(CH3)NH2]} as a synthetic phosphoesterase and nuclease , 2005 .

[13]  S. Pinelli,et al.  Copper(II) complexes with substituted thiosemicarbazones of alpha-ketoglutaric acid: synthesis, X-ray structures, DNA binding studies, and nuclease and biological activity. , 2004, Inorganic chemistry.

[14]  S. Moro,et al.  Toward efficient Zn(II)-based artificial nucleases. , 2004, Journal of the American Chemical Society.

[15]  Gerard Parkin,et al.  Synthetic analogues relevant to the structure and function of zinc enzymes. , 2004, Chemical reviews.

[16]  Fabrizio Mancin,et al.  The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters. , 2003, Inorganic chemistry.

[17]  E. Anslyn,et al.  Remarkable cooperativity between a ZnII ion and guanidinium/ammonium groups in the hydrolysis of RNA. , 2002, Angewandte Chemie.

[18]  K. Ichikawa,et al.  Hydrolysis of natural and artificial phosphoesters using zinc model compound with a histidine-containing pseudopeptide. , 2002, Journal of inorganic biochemistry.

[19]  R. Ward,et al.  Synthesis of C2 Symmetric 2,2'-Bipyridyl Imidazolidinone and Oxazaborolidine Derivatives , 2002 .

[20]  J. Barton,et al.  DNA hydrolysis and oxidative cleavage by metal-binding peptides tethered to rhodium intercalators. , 2002, Biochemistry.

[21]  R. Breslow,et al.  Concerning two-metal cooperativity in model phosphate hydrolysis. , 2001, Bioorganic chemistry.

[22]  C. Toniolo,et al.  Dinuclear Zn(2+) complexes of synthetic heptapeptides as artificial nucleases. , 2001, Journal of the American Chemical Society.

[23]  J. Cowan,et al.  Efficient Inorganic Deoxyribonucleases. Greater than 50-Million-Fold Rate Enhancement in Enzyme-Like DNA Cleavage , 2000 .

[24]  S. Lippard,et al.  Modeling Carboxylate-Bridged Dinuclear Active Sites in Metalloenzymes Using a Novel Naphthyridine-Based Dinucleating Ligand , 2000 .

[25]  G. Boschloo,et al.  Potentiostatic Modulation of the Lifetime of Light-Induced Charge Separation in a Heterosupermolecule , 1999 .

[26]  D. Odom,et al.  Recognition and reaction of metallointercalators with DNA. , 1999, Chemical reviews.

[27]  R. Krämer BIOINORGANIC MODELS FOR THE CATALYTIC COOPERATION OF METAL IONS AND FUNCTIONAL GROUPS IN NUCLEASE AND PEPTIDASE ENZYMES , 1999 .

[28]  D. McMillin,et al.  Photoprocesses of Copper Complexes That Bind to DNA. , 1998, Chemical reviews.

[29]  H. Schneider,et al.  Cobalt(III) Polyamine Complexes as Catalysts for the Hydrolysis of Phosphate Esters and of DNA. A Measurable 10 Million-Fold Rate Increase1 , 1997 .

[30]  A. Bianchi,et al.  Carboxy and Phosphate Esters Cleavage with Mono- and Dinuclear Zinc(II) Macrocyclic Complexes in Aqueous Solution. Crystal Structure of [Zn(2)L1(&mgr;-PP)(2)(MeOH)(2)](ClO(4))(2) (L1 = [30]aneN(6)O(4), PP(-) = Diphenyl Phosphate). , 1997, Inorganic chemistry.

[31]  J. Barton,et al.  Design of a Synthetic Nuclease: DNA Hydrolysis by a Zinc-Binding Peptide Tethered to a Rhodium Intercalator , 1997 .

[32]  Y. Fujii,et al.  HYDROLYTIC CLEAVAGE OF DNA BY A NOVEL COPPER(II) COMPLEX WITH CIS,CIS-1,3,5-TRIAMINOCYCLOHEXANE , 1997 .

[33]  R. Morgan,et al.  An Efficient Preparation of 4, 4′-Dicarboxy-2, 2′-Bipyridine , 1995 .

[34]  Ronald Breslow,et al.  SELECTIVE HYDROLYSIS OF PHOSPHATE ESTERS, NITROPHENYL PHOSPHATES AND UPU, BY DIMERIC ZINC COMPLEXES DEPENDS ON THE SPACER LENGTH , 1995 .

[35]  R. Krämer,et al.  Metal–ammonium cooperativity in phosphodiester hydrolysis , 1995 .

[36]  R. Krämer,et al.  Zink(II)-Komplexe des Ammonium-funktionalisierten 2,2′-Bipyridins [6,6′-{Me2N(H)CH2C≡C}2bpy](ClO4)2 und des verwandten Liganden 6,6′-(CH3CH2CH2C≡C)2bpy , 1994 .

[37]  Tohru Koike,et al.  Roles of zinc(II) ion in phosphatases. A model study with zinc(II)-macrocyclic polyamine complexes , 1991 .

[38]  J. Barton,et al.  On demonstrating DNA intercalation , 1990 .

[39]  W. Trogler,et al.  Hydrolysis of phosphodiesters with nickel(II), copper(II), zinc(II), palladium(II), and platinum(II) complexes , 1990 .

[40]  W. Dressick,et al.  Synthesis of 4,4′-divinyl-2,2′-bipyridine , 1990 .

[41]  J. Barton,et al.  Metal-activated hydrolytic cleavage of DNA , 1987 .

[42]  J. Lepecq,et al.  A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. , 1967, Journal of molecular biology.