Large Scale Visual Classification with Parallel, Imbalanced Bagging of Incremental LIBLINEAR SVM

ImageNet dataset with more than 14M images and 21K classes makes the problem of visual classification more difficult to deal with. One of the most difficult tasks is to train a fast and accurate classifier. In this paper, we address this challenge by extending the state-of-the-art large scale linear classifier LIBLINEAR-CDBLOCK proposed by Hsiang-Fu Yu in three ways: (1) improve LIBLINEARCDBLOCK for large number of classes with one-versus-all approach, (2) a balanced bagging algorithm for training binary classifiers, (3) parallelize the training process of classifiers with several multi-core computers. Our approach is evaluated on the 100 largest classes of ImageNet and ILSVRC 2010. The evaluation shows that our approach is 732 times faster than the original implementation and 1193 times faster than LIBLINEAR without (or very few) compromising classification accuracy.

[1]  François Poulet,et al.  Speed Up SVM Algorithm for Massive Classification Tasks , 2008, ADMA.

[2]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[3]  Antonio Torralba,et al.  Semi-Supervised Learning in Gigantic Image Collections , 2009, NIPS.

[4]  Jennifer G. Dy,et al.  A hierarchical method for multi-class support vector machines , 2004, ICML.

[5]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[6]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[7]  Jia Deng,et al.  Large scale visual recognition , 2012 .

[8]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[9]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[10]  Shuicheng Yan,et al.  Large scale natural image classification by sparsity exploration , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[12]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  J. Weston,et al.  Support Vector Machines for Multi-class Pattern Recognition 1. K-class Pattern Recognition 2. Solving K-class Problems with Binary Svms , 1999 .

[14]  Fei-Fei Li,et al.  What Does Classifying More Than 10, 000 Image Categories Tell Us? , 2010, ECCV.

[15]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[16]  Pietro Perona,et al.  Learning and using taxonomies for fast visual categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Chih-Jen Lin,et al.  A dual coordinate descent method for large-scale linear SVM , 2008, ICML '08.

[18]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[19]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[21]  Florent Perronnin,et al.  High-dimensional signature compression for large-scale image classification , 2011, CVPR 2011.

[22]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[23]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Younès Bennani,et al.  Dendogram based SVM for multi-class classification , 2006, 28th International Conference on Information Technology Interfaces, 2006..

[25]  Florent Perronnin,et al.  Large-scale image categorization with explicit data embedding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[28]  Ming Yang,et al.  Large-scale image classification: Fast feature extraction and SVM training , 2011, CVPR 2011.

[29]  James M. Rehg,et al.  Efficient and Effective Visual Codebook Generation Using Additive Kernels , 2011, J. Mach. Learn. Res..

[30]  Chih-Jen Lin,et al.  Large Linear Classification When Data Cannot Fit in Memory , 2011, TKDD.

[31]  Thanh-Nghi Do,et al.  Using Local Node Information in Decision Trees: Coupling a Local Labeling Rule with an Off-centered Entropy , 2008, DMIN.

[32]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[33]  Thanh-Nghi Do,et al.  A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees , 2008, PAKDD.

[34]  Ralescu Anca,et al.  ISSUES IN MINING IMBALANCED DATA SETS - A REVIEW PAPER , 2005 .

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[37]  Daniel P. Huttenlocher,et al.  Landmark classification in large-scale image collections , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[39]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[40]  Yann Guermeur,et al.  SVM Multiclasses, Théorie et Applications , 2007 .