Construction d'un vocabulaire patient/médecin dédié au cancer du sein à partir des médias sociaux

De nos jours, les medias sociaux sont de plus en plus utilises par les patients et les professionnels de sante. Les patients, generalement profanes dans le domaine medical, utilisent de l’argot, des abreviations et un vocabulaire qui leur est propre lors de leurs echanges. Pour analyser automatiquement les textes des reseaux sociaux, l’acquisition de ce vocabulaire specifique est necessaire. En nous appuyant sur un corpus de documents issus de messages de medias sociaux de type forums et Facebook, nous decrivons la construction d’une ressource lexicale qui aligne le vocabulaire des patients a celui des professionnels de sante. Ce travail permettra, d’une part d’ameliorer la recherche d’informations dans les forums de sante et d’autre part, de faciliter l’elaboration d’etudes statistiques basees sur les informations extraites de ces forums.

[1]  Maguelonne Teisseire,et al.  Yet Another Ranking Function for Automatic Multiword Term Extraction , 2014, PolTAL.

[2]  Cynthia Brandt,et al.  Improving Patients' Electronic Health Record Comprehension with NoteAid , 2013, MedInfo.

[3]  Jeffrey Heer,et al.  Identifying medical terms in patient-authored text: a crowdsourcing-based approach , 2013, J. Am. Medical Informatics Assoc..

[4]  Sandra Bringay,et al.  Breast Cancer and Quality of Life: Medical Information Extraction from Health Forums , 2014, MIE.

[5]  Mathieu Lafourcade,et al.  Increasing Long Tail in Weighted Lexical Networks , 2012, Coling 2012.

[6]  Jeffrey T. Hancock,et al.  The truth about lying in online dating profiles , 2007, CHI.

[7]  Jian Hu,et al.  Using Wikipedia knowledge to improve text classification , 2009, Knowledge and Information Systems.

[8]  Kai Zheng,et al.  Applying Multiple Methods to Assess the Readability of a Large Corpus of Medical Documents , 2013, MedInfo.

[9]  Simone Paolo Ponzetto,et al.  Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution , 2006, NAACL.

[10]  Fernando Martín-Sánchez,et al.  Health outcomes and related effects of using social media in chronic disease management: A literature review and analysis of affordances , 2013, J. Biomed. Informatics.

[11]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[12]  Christopher G. Chute,et al.  BioPortal: ontologies and integrated data resources at the click of a mouse , 2009, Nucleic Acids Res..

[13]  Wolfgang Nejdl,et al.  Extracting Semantics Relationships between Wikipedia Categories , 2006, SemWiki.

[14]  Alla Keselman,et al.  Term Identification Methods for Consumer Health Vocabulary Development , 2007, Journal of medical Internet research.

[15]  Qing Zeng-Treitler,et al.  Computer-Assisted Update of a Consumer Health Vocabulary Through Mining of Social Network Data , 2011, Journal of medical Internet research.

[16]  Ian H. Witten,et al.  An effective, low-cost measure of semantic relatedness obtained from Wikipedia links , 2008 .

[17]  Henry A. Kautz,et al.  Modeling Spread of Disease from Social Interactions , 2012, ICWSM.

[18]  Maguelonne Teisseire,et al.  Integration of linguistic and web information to improve biomedical terminology extraction , 2014, IDEAS.

[19]  Paolo Rosso,et al.  Mining Knowledge fromWikipedia for the Question Answering task , 2006, LREC.

[20]  Ronald M Epstein,et al.  Patient Trust: Is It Related to Patient-Centered Behavior of Primary Care Physicians? , 2004, Medical care.

[21]  Maguelonne Teisseire,et al.  BIOTEX: A system for Biomedical Terminology Extraction, Ranking, and Validation , 2014, International Semantic Web Conference.

[22]  Qing Zeng-Treitler,et al.  Exploring and developing consumer health vocabularies. , 2006, Journal of the American Medical Informatics Association : JAMIA.