Size-dependent ferroelectric behaviors of BaTiO3 nanowires

Landau-Ginsburg-Devonshire theory is introduced to investigate the size-dependent ferroelectric properties of BaTiO3 nanowires, with the consideration of polarization orienting along the radial direction. It is shown that the Curie temperature, mean polarization, and area enclosed by hysteresis loop decrease with the reducing diameter of the nanowire. However, this size effect becomes obvious only when the diameter is below 20nm. Above this, the ferroelectric behaviors of nanowires are almost the same as those of bulk materials. Furthermore, there exists a temperature-dependent critical diameter for BaTiO3 nanowire below which the hysteresis loops vanish and it is 3.6nm at room temperature.

[1]  Finite-size effects in BaTiO3 nanowires , 2005, cond-mat/0503362.

[2]  I. Naumov,et al.  Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires. , 2005, Physical review letters.

[3]  J. Spanier,et al.  Single‐Crystalline Barium Titanate Nanowires , 2003 .

[4]  W. J. Merz,et al.  Double Hysteresis Loop of BaTiO 3 at the Curie Point , 1953 .

[5]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[6]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[7]  Abhijit P. Suryavanshi,et al.  Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing , 2006 .

[8]  C. Choy,et al.  Dynamic hysteresis scaling of first-order phase transition ferroelectrics near the phase transition point in the (η2)3 model , 2003 .

[9]  F. Morrison,et al.  LETTER TO THE EDITOR: High aspect ratio piezoelectric strontium bismuth tantalate nanotubes , 2003 .

[10]  Jiyan Dai,et al.  Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays , 2004 .

[11]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[12]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[13]  Anna N. Morozovska,et al.  Ferroelectricity enhancement in confined nanorods: Direct variational method , 2006 .

[14]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[15]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[16]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[17]  Kenji Ishikawa,et al.  Surface relaxation in ferroelectric perovskites , 1999 .

[18]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[19]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[20]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[21]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[22]  F. Morrison,et al.  Perovskite lead zirconium titanate nanorings: Towards nanoscale ferroelectric “solenoids”? , 2006 .

[23]  U. Gösele,et al.  Well-ordered arrays of pyramid-shaped ferroelectric BaTiO3 nanostructures , 2003 .

[24]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .