Towards Holistic Surgical Scene Understanding

[1]  P. Heng,et al.  TraSeTR: Track-to-Segment Transformer with Contrastive Query for Instance-level Instrument Segmentation in Robotic Surgery , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[2]  Danyal Fer,et al.  Towards accurate surgical workflow recognition with convolutional networks and transformers , 2021, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[3]  Xiaomeng Li,et al.  Exploring Segment-Level Semantics for Online Phase Recognition From Surgical Videos , 2021, IEEE Transactions on Medical Imaging.

[4]  N. Padoy,et al.  Rendezvous: Attention Mechanisms for the Recognition of Surgical Action Triplets in Endoscopic Videos , 2021, Medical Image Anal..

[5]  Stephen Lin,et al.  Video Swin Transformer , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Serena Yeung,et al.  A real-time spatiotemporal AI model analyzes skill in open surgical videos , 2021, ArXiv.

[7]  Christoph Feichtenhofer,et al.  Multiscale Vision Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Riccardo Muradore,et al.  The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges and methods , 2021, ArXiv.

[9]  Mamoru Mitsuishi,et al.  MIcro-Surgical Anastomose Workflow recognition challenge report , 2021, Comput. Methods Programs Biomed..

[10]  Pheng-Ann Heng,et al.  Trans-SVNet: Accurate Phase Recognition from Surgical Videos via Hybrid Embedding Aggregation Transformer , 2021, MICCAI.

[11]  S. T. Kim,et al.  OperA: Attention-Regularized Transformers for Surgical Phase Recognition , 2021, MICCAI.

[12]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[13]  Satoshi Kondo,et al.  LapFormer: surgical tool detection in laparoscopic surgical video using transformer architecture , 2020, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[14]  Bin Li,et al.  Deformable DETR: Deformable Transformers for End-to-End Object Detection , 2020, ICLR.

[15]  Peter M. Full,et al.  Heidelberg colorectal data set for surgical data science in the sensor operating room , 2020, Scientific Data.

[16]  Juan Carlos Niebles,et al.  MOMA: Multi-Object Multi-Actor Activity Parsing , 2021, NeurIPS.

[17]  Pablo Andrés Arbeláez,et al.  ISINet: An Instance-Based Approach for Surgical Instrument Segmentation , 2020, MICCAI.

[18]  Jacques Marescaux,et al.  Recognition of Instrument-Tissue Interactions in Endoscopic Videos via Action Triplets , 2020, MICCAI.

[19]  Omid Mohareri,et al.  Automatic Operating Room Surgical Activity Recognition for Robot-Assisted Surgery , 2020, MICCAI.

[20]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[21]  Chi-Sheng Shih,et al.  2018 Robotic Scene Segmentation Challenge , 2020, ArXiv.

[22]  Danail Stoyanov,et al.  CaDIS: Cataract Dataset for Image Segmentation , 2019, ArXiv.

[23]  Lena Maier-Hein,et al.  2017 Robotic Instrument Segmentation Challenge , 2019, ArXiv.

[24]  Jitendra Malik,et al.  SlowFast Networks for Video Recognition , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Cordelia Schmid,et al.  AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Russell H. Taylor,et al.  Surgical data science for next-generation interventions , 2017, Nature Biomedical Engineering.

[27]  Fabio Viola,et al.  The Kinetics Human Action Video Dataset , 2017, ArXiv.

[28]  Gregory D. Hager,et al.  A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery , 2017, IEEE Transactions on Biomedical Engineering.

[29]  Andru Putra Twinanda,et al.  EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos , 2016, IEEE Transactions on Medical Imaging.

[30]  Nassir Navab,et al.  The TUM LapChole dataset for the M2CAI 2016 workflow challenge , 2016, ArXiv.

[31]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Pierre Jannin,et al.  Surgical process modelling: a review , 2014, International Journal of Computer Assisted Radiology and Surgery.