Towards multiscale modelling in product engineering

A concept of multiscale modelling of product manufacturing based on integration of three modelling methods currently applied at different scales of length and time: process system modelling, computational fluid dynamics and computational chemistry was presented. Major features of the three key types of modelling in the chemical and process industries were briefly described. The first applications and mutual benefits of joint use of two of the three approaches were presented along with the perspectives for the full integration of all three methods. The crucial role of a universal interface, such as the CAPE-OPEN standard, was emphasized.

[1]  Pascal Floquet,et al.  Numerical and computational strategy for pressure-driven steady-state simulation of oilfield production , 2009, Comput. Chem. Eng..

[2]  Michael C. Sukop,et al.  Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers , 2005 .

[3]  S. E. Zitney CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation , 2006 .

[4]  Klaus Lucas,et al.  Molecular Models for Fluids , 2007 .

[5]  Niket S. Kaisare,et al.  Hierarchical multiscale model-based design of experiments, catalysts, and reactors for fuel processing , 2006, Comput. Chem. Eng..

[6]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[7]  H. Kramer,et al.  Design of industrial crystallisers for a given product quality , 1999 .

[8]  Ian T. Cameron,et al.  Process Modelling and Model Analysis , 2013 .

[9]  Holger Löwe,et al.  Chemical micro process engineering : fundamentals, modelling and reactions , 2005 .

[10]  L. Kurowski,et al.  A new experimental relation for effective thermal conductivity of nanofluids , 2009 .

[11]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[12]  Rafiqul Gani,et al.  Chemical product design: challenges and opportunities , 2004, Comput. Chem. Eng..

[13]  B. Widom Statistical Mechanics: A Concise Introduction for Chemists , 2002 .

[14]  Volker Hessel,et al.  Chemical micro process engineering , 2003 .

[15]  Maurizio Fermeglia,et al.  Molecular Modeling and Process Simulation: Real Possibilities and Challenges , 2003 .

[16]  Georges Heyen,et al.  Adaptation and testing of data reconciliation software for CAPE-OPEN compliance , 2009 .

[17]  R. Mann,et al.  Effects of convection, feed-separation and macro-mixing on particle size distributions for double-jet semi-batch precipitation in a stirred vessel , 2005 .

[18]  Ignacio E. Grossmann,et al.  Research challenges in process systems engineering , 2000 .

[19]  Maurizio Fermeglia,et al.  Multiscale modeling for polymer systems of industrial interest , 2007 .

[20]  Stephen E. Zitney,et al.  Integrated Process Simulation and CFD for Improved Process Engineering , 2002 .

[21]  Jun Yang,et al.  Development of a chemical process modeling environment based on CAPE-OPEN interface standards and the Microsoft .NET framework , 2005, Comput. Chem. Eng..

[22]  R. Mcweeny Quantum mechanics : methods and basic applications , 1973 .

[23]  P. Coveney,et al.  Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. , 2007, The Journal of chemical physics.

[24]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[25]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[26]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[27]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[28]  Peter Banks,et al.  A deliverable from CO-LaN to CAPE-OPEN developers and users: the CAPE-OPEN Logging and Testing Tool (COLTT) , 2007 .

[29]  D. Yuen,et al.  Bridging diverse physical scales with the discrete-particle paradigm in modeling colloidal dynamics with mesoscopic features , 2006 .

[30]  Stefan Heinz,et al.  Statistical mechanics of turbulent flows , 2003 .

[31]  Pedro M. Saraiva,et al.  Chemical product engineering: An emerging paradigm within chemical engineering , 2006 .

[32]  David C. Young,et al.  Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems , 2001 .

[33]  Sandro Macchietto,et al.  A general methodology for hybrid multizonal/CFD models: Part I. Theoretical framework , 2004, Comput. Chem. Eng..

[34]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[35]  Andreas ten Cate,et al.  Compartmental modeling of an 1100L DTB crystallizer based on large eddy flow simulation , 2000 .

[36]  Wolfgang Marquardt,et al.  Trends in computer-aided process modeling , 1996 .

[37]  Kyriakos C. Giannakoglou,et al.  CFD-based analysis and two-level aerodynamic optimization on Graphics Processing Units , 2010 .

[38]  Arie E. Kaufman,et al.  Lattice-based flow field modeling , 2004, IEEE Transactions on Visualization and Computer Graphics.

[39]  A. A. Gusev,et al.  Finite element assessment of the potential of platelet-filled polymers for membrane gas separations , 2008 .

[40]  Carl Sandrock,et al.  Dynamic simulation of Chemical Engineering systems using OpenModelica and CAPE-OPEN , 2009 .

[42]  A. Chatterji,et al.  Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems. , 2005, The Journal of chemical physics.

[43]  Alan Jones,et al.  Crystallization and precipitation engineering , 2005, Comput. Chem. Eng..

[44]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[45]  Maurizio Fermeglia,et al.  Cape Open interface revisited in term of class-based framework: an implementation in .NET. , 2007 .

[46]  Richard D. Braatz,et al.  Multiscale systems engineering with applications to chemical reaction processes , 2004 .

[47]  Maurizio Fermeglia,et al.  Multiscale molecular modeling in nanostructured material design and process system engineering , 2009, Comput. Chem. Eng..

[48]  S. Chung,et al.  Investigation of Crystallization in a Jet Y-Mixer by a Hybrid Computational Fluid Dynamics and Process Simulation Approach , 2005 .

[49]  C. Pantelides,et al.  Molecular Dynamics as a Mathematical Mapping. II. Partial Derivatives in the Microcanonical Ensemble , 2001 .

[50]  M. Kraume 11th European Conference on Mixing , 2004 .

[51]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[52]  D. Vlachos,et al.  Recent developments on multiscale, hierarchical modeling of chemical reactors , 2002 .

[53]  Rafiqul Gani,et al.  Computer-aided multiscale modelling for chemical process engineering , 2007 .

[54]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[55]  J. P. B. Mota,et al.  Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation , 2004, Comput. Chem. Eng..

[56]  Antonius Broekhuis,et al.  The Many Facets of Product Technology , 2004 .

[57]  I. T. Cameron,et al.  A survey of industrial process modelling across the product and process lifecycle , 2008, Comput. Chem. Eng..

[58]  R. Yamamoto,et al.  A model for hybrid simulations of molecular dynamics and computational fluid dynamics , 2008, 0803.0099.

[59]  G. He,et al.  A dynamic coupling model for hybrid atomistic-continuum computations , 2007 .

[60]  Peter V. Coveney,et al.  Hybrid molecular–continuum fluid dynamics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  Shiyi Chen,et al.  A continuum-atomistic simulation of heat transfer in micro- and nano-flows , 2007, J. Comput. Phys..

[62]  Wolfgang Marquardt,et al.  Modular dynamic simulation for integrated particulate processes by means of tool integration , 2005 .

[63]  James Wei,et al.  Coordination of multi-scales in chemical engineering , 2007 .

[64]  C. Y. Soong,et al.  Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows , 2007 .

[65]  Rafiqul Gani,et al.  Use of CAPE-OPEN standards in the interoperability between modelling tools (MoT) and process simulators (Simulis® Thermodynamics and ProSimPlus) , 2008 .

[66]  E. Kougoulos,et al.  Process Modelling Tools for Continuous and Batch Organic Crystallization Processes Including Application to Scale-Up , 2006 .

[67]  Maurizio Fermeglia,et al.  Computer aided design for sustainable industrial processes: Specific tools and applications , 2009 .

[68]  Jean-Claude Charpentier,et al.  Managing complex systems: some trends for the future of chemical and process engineering , 2004 .

[69]  Wei Ge,et al.  Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs , 2009 .

[70]  Wolfgang Paul,et al.  GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model , 2009, J. Comput. Phys..

[71]  Jean-Claude Charpentier,et al.  The triplet "molecular processes-product-process" engineering: the future of chemical engineering ? , 2002 .

[72]  Stephen E. Zitney,et al.  Advanced process engineering co-simulation using CFD-based reduced order models , 2007 .

[73]  Stelios Rigopoulos,et al.  A hybrid CFD: reaction engineering framework for multiphase reactor modelling: basic concept and application to bubble column reactors , 2003 .

[74]  Alan Jones,et al.  On the influence of mixing on crystal precipitation processes—application of the segregated feed model , 2002 .

[75]  Eric S. Fraga,et al.  A multi-agent system to facilitate component-based process modeling and design , 2008, Comput. Chem. Eng..

[76]  Rafiqul Gani,et al.  Computer-Aided Methods and Tools for Chemical Product Design , 2004 .

[77]  Herman J. M. Kramer,et al.  Modelling of industrial crystallizers, a compartmental approach using a dynamic flow-sheeting tool , 1996 .

[78]  L. Kurowski,et al.  Numerical simulation of heat transfer in nanofluids , 2009 .

[79]  Z. Jaworski,et al.  Multiscale modelling of chemical reactors , 2008 .

[80]  Eugeny Y. Kenig,et al.  On the development of new column internals for reactive separations via integration of CFD and process simulation , 2003 .

[81]  Wei-Kang Yuan,et al.  Targeting the dominating-scale structure of a multiscale complex system : A methodological problem , 2007 .

[82]  Lars von Wedel,et al.  An overview of the interoperability roadmap for COM/.NET-Based CAPE-OPEN , 2007 .

[83]  A. Chatterjee,et al.  Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems , 2005, Comput. Chem. Eng..

[84]  S. Zitney,et al.  Development of CAPE-OPEN unit operations for advanced power systems modeling , 2007 .

[85]  Martin J. Field,et al.  A Practical Introduction to the Simulation of Molecular Systems: Subject index , 2007 .

[86]  Edward L Cussler,et al.  Chemical product design , 2001 .

[87]  Sandro Macchietto,et al.  A general framework for the integration of computational fluid dynamics and process simulation , 2000 .

[88]  Electrophoretic properties of highly charged colloids: a hybrid molecular dynamics/lattice Boltzmann simulation study. , 2006, The Journal of chemical physics.

[89]  D. Vlachos,et al.  Mesoscopic modeling of chemical reactivity , 2004 .

[90]  Paul I. Barton,et al.  Equation-oriented dynamic simulation current status and future perspectives , 1993 .

[91]  Weiguo Liu,et al.  Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..

[92]  Ralph W. Pike,et al.  An approach to on-line optimization of chemical plants , 1995 .

[93]  Jean-Claude Charpentier,et al.  Perspective on multiscale methodology for product design and engineering , 2009, Comput. Chem. Eng..

[94]  Karsten-Ulrich Klatt,et al.  Perspectives for process systems engineering - Personal views from academia and industry , 2009, Comput. Chem. Eng..

[95]  Bjarne A. Foss,et al.  A field study of the industrial modeling process , 1998 .

[96]  Michael Hill,et al.  Chemical Product Engineering - The third paradigm , 2009, Comput. Chem. Eng..

[97]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[98]  Ian T. Cameron,et al.  Classification and analysis of integrating frameworks in multiscale modelling , 2004 .

[99]  B. L. Braunschweig,et al.  Process Modeling: The Promise of Open Software Architectures , 2000 .

[100]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[101]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.