Synchronous couplings of reflected Brownian motions in smooth domains

For every bounded planar domain $D$ with a smooth boundary, we define a `Lyapunov exponent' $\Lambda(D)$ using a fairly explicit formula. We consider two reflected Brownian motions in $D$, driven by the same Brownian motion (i.e., a `synchronous coupling'). If $\Lambda(D)>0$ then the distance between the two Brownian particles goes to 0 exponentially fast with rate $\Lambda (D)/(2|D|)$ as time goes to infinity. The exponent $\Lambda(D)$ is strictly positive if the domain has at most one hole. It is an open problem whether there exists a domain with $\Lambda(D)<0$.

[1]  Nathalie Jacobs Springer , 2006 .

[2]  R. Bass,et al.  Uniqueness for reflecting Brownian motion in lip domains , 2005 .

[3]  Hiroaki Aikawa Potential‐Theoretic Characterizations of Nonsmooth Domains , 2004 .

[4]  Elton P. Hsu Multiplicative functional for the heat equation on manifolds with boundary , 2002 .

[5]  K. Burdzy,et al.  Coalescence of synchronous couplings , 2002 .

[6]  K. Burdzy,et al.  On the “Hot Spots” Conjecture of J. Rauch , 1999 .

[7]  塚田 弘志,et al.  書評 Ioannis Karatzas & Steven E. Shreve Brownian Motion and Stochastic Calculus , 1998 .

[8]  R. Bass Probabilistic Techniques in Analysis , 1994 .

[9]  Richard F. Bass,et al.  Some Potential Theory for Reflecting Brownian Motion in Holder and Lipschitz Domains , 1991 .

[10]  M. Cranston,et al.  Noncoalescence for the Skorohod equation in a convex domain of ℝ2 , 1990 .

[11]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[12]  Zhongxin Zhao Uniform boundedness of conditional gauge and Schrödinger equations , 1984 .

[13]  M. Cranston,et al.  On the noncoalescence of a two point Brownian motion reflecting on a circle , 1989 .

[14]  K. Burdzy Multidimensional Brownian excursions and potential theory , 1987 .

[15]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[16]  辻 正次,et al.  Potential theory in modern function theory , 1959 .

[17]  Masatsugu Tsuji,et al.  Potential theory in modern function theory , 1959 .