Adaptive isogeometric analysis by local h-refinement with T-splines

[1]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[2]  P. Pébay Proceedings of the 15th International Meshing Roundtable , 2006 .

[3]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[4]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[5]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[6]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[7]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[8]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[9]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[10]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[11]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[12]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  Peter Bastian,et al.  Adaptive Multigrid Methods: The UG Concept , 1994 .

[15]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[16]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[17]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[18]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[19]  P. Gould Introduction to Linear Elasticity , 1983 .