Adaptive isogeometric analysis by local h-refinement with T-splines
暂无分享,去创建一个
[1] Thomas J. R. Hughes,et al. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.
[2] P. Pébay. Proceedings of the 15th International Meshing Roundtable , 2006 .
[3] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[4] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[5] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[6] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[7] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[8] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[9] Carsten Carstensen,et al. Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .
[10] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[11] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[12] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[13] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[14] Peter Bastian,et al. Adaptive Multigrid Methods: The UG Concept , 1994 .
[15] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[16] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[17] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[18] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[19] P. Gould. Introduction to Linear Elasticity , 1983 .