Reductions for the Stable Set Problem

One approach to finding a maximum stable set (MSS) in a graph isto try to reduce the size of the problem by transforming the problem into an equivalent problem on a sma ller graph. This paper introduces several new reductions for the MSS problem, extends several well-known reductionsto the maximum weight stable set (MWSS) problem, demonstrates how reductions for the generalized stable setproblem can be used in conjunction with probing to produce powerful new reductions for both the MSS and MWSS problems, a nd shows how hypergraphs can be used to expand the capabilities of clique projections. The effectivenessof these new reduction techniques are illustrated on the DIM ACS benchmark graphs, planar graphs, and a set of challenging MS S problems arising from Steiner Triple Systems.

[1]  D. R. Fulkerson,et al.  Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems , 1974 .

[2]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[3]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[4]  P. Hammer,et al.  Vertices Belonging to All or to No Maximum Stable Sets of a Graph , 1982 .

[5]  M. Padberg,et al.  Degree-two Inequalities, Clique Facets, and Biperfect Graphs , 1982 .

[6]  P. Hammer,et al.  Pseudo-Boolean functions and stability of graphs , 1984 .

[7]  Tang Jian,et al.  An O(20.304n) Algorithm for Solving Maximum Independent Set Problem , 1986, IEEE Trans. Computers.

[8]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[9]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[10]  William R. Pulleyblank,et al.  König-Egerváry graphs, 2-bicritical graphs and fractional matchings , 1989, Discret. Appl. Math..

[11]  E. Balas,et al.  Minimum Weighted Coloring Of Triangulated Graphs, With Application To Weighted Vertex Packing In Arbitrary Graphs , 1989 .

[12]  Etsuji Tomita,et al.  A Simple Algorithm for Finding a Maximum Clique and Its Worst-Case Time Complexity , 1990, Systems and Computers in Japan.

[13]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[14]  Gottfried Tinhofer,et al.  A branch and bound algorithm for the maximum clique problem , 1990, ZOR Methods Model. Oper. Res..

[15]  Alain Hertz,et al.  Tabaris: An exact algorithm based on tabu search for finding a maximum independent set in a graph , 1990, Comput. Oper. Res..

[16]  E. Sewell Stability critical graphs and the stable set polytope , 1990 .

[17]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[18]  Panos M. Pardalos,et al.  An algorithm for finding a maximum weighted independent set in an arbitrary graph , 1991, Int. J. Comput. Math..

[19]  G. Nemhauser,et al.  A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing , 1992 .

[20]  Panos M. Pardalos,et al.  A branch and bound algorithm for the maximum clique problem , 1992, Comput. Oper. Res..

[21]  Egon Balas,et al.  Addendum: Minimum Weighted Coloring of Triangulated Graphs, with Application to Maximum Weight Vertex Packing and Clique Finding in Arbitrary Graphs , 1992, SIAM J. Comput..

[22]  Caterina De Simone,et al.  Stability Number of Bull- and Chair-Free Graphs , 1993, Discret. Appl. Math..

[23]  Carlo Mannino,et al.  Edge projection and the maximum cardinality stable set problem , 1993, Cliques, Coloring, and Satisfiability.

[24]  Leslie E. Trotter,et al.  Stability Critical Graphs and Even Subdivisions of K4 , 1990, J. Comb. Theory, Ser. B.

[25]  Gilbert Laporte,et al.  An exact quadratic 0-1 algorithm for the stable set problem , 1993, Cliques, Coloring, and Satisfiability.

[26]  Carlo Mannino,et al.  An exact algorithm for the maximum stable set problem , 1994, Comput. Optim. Appl..

[27]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[28]  Edward C. Sewell,et al.  Binary integer programs with two variables per inequality , 1996, Math. Program..

[29]  David R. Wood,et al.  An algorithm for finding a maximum clique in a graph , 1997, Oper. Res. Lett..

[30]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[31]  Edward C. Sewell,et al.  A Branch and Bound Algorithm for the Stability Number of a Sparse Graph , 1998, INFORMS J. Comput..

[32]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[33]  Patric R. J. Östergård,et al.  A New Algorithm for the Maximum-Weight Clique Problem , 1999, Electron. Notes Discret. Math..

[34]  M. Fellows,et al.  An improved fixed parameter tractable algorithm for vertex cover , 1999 .

[35]  Carlo Mannino,et al.  An Augmentation Algorithm for the Maximum Weighted Stable Set Problem , 1999, Comput. Optim. Appl..

[36]  Weijia Jia,et al.  Improvement on vertex cover for low-degree graphs , 2000, Networks.

[37]  László Lovász,et al.  Facets with fixed defect of the stable set polytope , 2000, Math. Program..

[38]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[39]  László Lovász,et al.  Critical Facets of the Stable Set Polytope , 2001, Comb..

[40]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[41]  Jean-Charles Régin,et al.  Using Constraint Programming to Solve the Maximum Clique Problem , 2003, CP.

[42]  Peter L. Hammer,et al.  Struction revisited , 2003, Discret. Appl. Math..

[43]  Luitpold Babel,et al.  A fast algorithm for the maximum weight clique problem , 1994, Computing.

[44]  Luitpold Babel Finding maximum cliques in arbitrary and in special graphs , 2005, Computing.

[45]  Endre Boros,et al.  Preprocessing of unconstrained quadratic binary optimization , 2006 .

[46]  Jane Zundel MATCHING THEORY , 2011 .