Covariance-Based Realization Algorithm for the Identification of Aeroelastic Dynamics

Anovel subspace system identificationmethod based on covariance estimates and inspired by classical realization techniques is presented that constructs system estimates frommeasured input–output data. The resulting algorithm allows for the identification of parametric systemmodels from data sets of large signal dimension and is applicable to data perturbed by colored noise and acquired in closed-loop operation due to the unbiased estimation of crosscovariance functions, even in low signal-to-noise conditions. The algorithm is applied to data measured onboard an F/A-18. The results demonstrate the effectiveness of the algorithm in efficiently computing accurate, unbiased linear dynamic models from large data sets of high-dimensional signal sets obtained from aircraft in flight.

[1]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[2]  R. K. Mehra,et al.  Identification of aircraft and rotorcraft aeroelastic modes using state space system identification , 1995, Proceedings of International Conference on Control Applications.

[3]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[4]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Alessandro Chiuso,et al.  The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..

[7]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[8]  Daniel N. Miller,et al.  Efficient Identification of Input Dynamics for Correlation Function-Based Subspace Identification , 2011 .

[9]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[10]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[13]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[14]  Rick Lind,et al.  Overview of Recent Flight Flutter Testing Research at NASA Dryden , 1997 .

[15]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[16]  Raymond A. de Callafon,et al.  Subspace identification using dynamic invariance in shifted time-domain data , 2010, 49th IEEE Conference on Decision and Control (CDC).

[17]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[18]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[19]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[20]  E. Parloo,et al.  Modal parameter estimation and monitoring for on-line flight flutter analysis , 2004 .

[21]  A. Benveniste,et al.  Input/output versus output-only data processing for structural identification—Application to in-flight data analysis , 2006 .

[22]  A. Benveniste,et al.  Aircraft flutter test design using identification and simulation: a SCILAB toolbox , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[23]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[24]  Dario H. Baldelli,et al.  Flutter-Prediction Tool for Flight-Test-Based Aeroelastic Parameter-Varying Models , 2009 .