Where is the nearest non-regular pencil?

Abstract This is a first step toward the goal of finding a way to calculate a smallest norm deregularizing perturbation of a given square matrix pencil. Minimal de-regularizing perturbations have geometric characterizations that include a variable projection linear least squares problem and a minimax characterization reminiscent of the Courant-Fischer theorem. The characterizations lead to new, computationally attractive upper and lower bounds. We give a brief survey and illustrate strengths and weaknesses of several upper and lower bounds some of which are well-known and some of which are new. The ultimate goal remains elusive.

[1]  Nancy Nichols,et al.  Regularization of descriptor systems by output feedback , 1994, IEEE Trans. Autom. Control..

[2]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[3]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[4]  James Demmel,et al.  Accurate solutions of ill-posed problems in control theory , 1988 .

[5]  Ton Geerts Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case , 1993 .

[6]  V. Kublanovskaya AB-Algorithm and its modifications for the spectral problems of linear pencils of matrices , 1984 .

[7]  Fred T. Krogh,et al.  Efficient implementation of a variable projection algorithm for nonlinear least squares problems , 1974, CACM.

[8]  C. D. Boor,et al.  Recent Advances in Numerical Analysis. , 1982 .

[9]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[10]  TheAB-algorithm and its properties , 1983 .

[11]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[12]  T. D. Morley,et al.  Positive solutions to X = A−BX-1 B∗ , 1990 .

[13]  V. Kublanovskaya,et al.  Spectral problems for matrix pencils. Methods and algorithms. I , 1988 .

[14]  Jaroslav Kautsky,et al.  Robust pole assignment in singular control systems , 1989 .

[15]  J. Engwerda On the existence of a positive definite solution of the matrix equation X + A , 1993 .

[16]  Nancy Nichols,et al.  On the stability radius of a generalized state-space system , 1993 .

[17]  James Hardy Wilkinson,et al.  Kronecker''s canonical form and the QZ algorithm , 1979 .

[18]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[19]  Erik Elmroth,et al.  The Set of 2-by-3 Matrix Pencils - Kronecker Structures and Their Transitions under Perturbations , 1996, SIAM J. Matrix Anal. Appl..

[20]  R. Ward The Combination Shift $QZ$ Algorithm , 1975 .

[21]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..

[22]  S. Nash Preconditioning of Truncated-Newton Methods , 1985 .

[23]  A. Ran,et al.  Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A*X-1A = Q , 1993 .

[24]  Volker Mehrmann,et al.  Regularization of Descriptor Systems by Derivative and Proportional State Feedback , 1992, SIAM J. Matrix Anal. Appl..

[25]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[26]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[27]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[28]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[29]  S. Campbell Singular Systems of Differential Equations , 1980 .

[30]  G. Stewart On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Bo Kågström,et al.  RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .

[33]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[34]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  S. Nash Newton-Type Minimization via the Lanczos Method , 1984 .

[37]  James Hardy Wilkinson,et al.  Linear Differential Equations and Kronecker's Canonical Form , 1978 .

[38]  Linda Kaufman,et al.  A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems , 1974 .

[39]  Volker Mehrmann,et al.  Regularization of Linear Descriptor Systems with Variable Coefficients , 1997 .

[40]  R. Byers,et al.  Descriptor Systems Without Controllability at Infinity , 1997 .