Repeated quantum error correction on a continuously encoded qubit by real-time feedback

Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.

[1]  John J. L. Morton,et al.  29Si nuclear spins as a resource for donor spin qubits in silicon , 2015, 1505.02057.

[2]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[3]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[4]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[5]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[6]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[7]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[8]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[9]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[10]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[11]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[12]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[13]  Jiangfeng Du,et al.  Noise-resilient quantum evolution steered by dynamical decoupling , 2013, Nature Communications.

[14]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[15]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[16]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[17]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[18]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[19]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[20]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[21]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[22]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[23]  P Cappellaro,et al.  Coherence of an optically illuminated single nuclear spin qubit. , 2007, Physical review letters.

[24]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[25]  R. Walsworth,et al.  Anti-reflection coating for nitrogen-vacancy optical measurements in diamond , 2012 .

[26]  R. J. Schoelkopf,et al.  Tracking photon jumps with repeated quantum non-demolition parity measurements , 2013, Nature.

[27]  D. J. Twitchen,et al.  Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback , 2013, Nature Physics.

[28]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[29]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[30]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[31]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[32]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.

[33]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[34]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[35]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[36]  M. Markham,et al.  Demonstration of entanglement-by-measurement of solid-state qubits , 2012, Nature Physics.

[37]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[38]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.