Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph

Distinct gap features in the nearest protoplanetary disk, TW Hya (distance of 59.5$\pm$0.9 pc), may be signposts of ongoing planet formation. We performed long-exposure thermal infrared coronagraphic imaging observations to search for accreting planets especially within dust gaps previously detected in scattered light and submm-wave thermal emission. Three nights of observations with the Keck/NIRC2 vortex coronagraph in $L^\prime$ (3.4-4.1$\mu$m) did not reveal any statistically significant point sources. We thereby set strict upper limits on the masses of non-accreting planets. In the four most prominent disk gaps at 24, 41, 47, and 88 au, we obtain upper mass limits of 1.6-2.3, 1.1-1.6, 1.1-1.5, and 1.0-1.2 Jupiter masses ($M_J$) assuming an age range of 7-10 Myr for TW Hya. These limits correspond to the contrast at 95\% completeness (true positive fraction of 0.95) with a 1\% chance of a false positive within $1^{\prime\prime}$ of the star. We also approximate an upper limit on the product of planet mass and planetary accretion rate of $M_p\dot{M}\lesssim10^{-8} M_J^2/yr$ implying that any putative $\sim0.1 M_J$ planet, which could be responsible for opening the 24 au gap, is presently accreting at rates insufficient to build up a Jupiter mass within TW Hya's pre-main sequence lifetime.

[1]  Richard P. Nelson,et al.  Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth , 1999 .

[2]  Berkeley,et al.  Infrared Views of the TW Hydra Disk , 2001, astro-ph/0110342.

[3]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[4]  G. Blake,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[5]  J. Cuzzi,et al.  Material Enhancement in Protoplanetary Nebulae by Particle Drift through Evaporation Fronts , 2004, astro-ph/0409276.

[6]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[7]  N. Calvet,et al.  An Inner Hole in the Disk around TW Hydrae Resolved in 7 mm Dust Emission , 2007, 0704.2422.

[8]  B. Oppenheimer,et al.  The Gemini Deep Planet Survey , 2007, 0705.4290.

[9]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[10]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[11]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[12]  J. Carpenter,et al.  INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau , 2010, 1003.4318.

[13]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[14]  W. Vacca,et al.  NEAR-INFRARED SPECTROSCOPY OF TW Hya: A REVISED SPECTRAL TYPE AND COMPARISON WITH MAGNETOSPHERIC ACCRETION MODELS , 2011, 1102.0535.

[15]  Jonathan P. Williams,et al.  THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES , 2011, 1111.5037.

[16]  M. Benisty,et al.  Ring shaped dust accumulation in transition disks , 2012, 1207.6485.

[17]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[18]  Esther Buenzli,et al.  Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet? - SAO 206462 (HD 135344B) in polarized light with VLT/NACO , 2013, 1311.4195.

[19]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[20]  Geoffrey A. Blake,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[21]  D. Mawet,et al.  Searching for companions down to 2 AU from β Pictoris using the L′-band AGPM coronagraph on VLT/NACO , 2013, 1311.4298.

[22]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE COMPANION DETECTION PIPELINE , 2013, 1310.4172.

[23]  L. Hillenbrand,et al.  AN OPTICAL SPECTROSCOPIC STUDY OF T TAURI STARS. I. PHOTOSPHERIC PROPERTIES , 2014, 1403.1675.

[24]  A. Krone-Martins,et al.  The TW Hydrae association: trigonometric parallaxes and kinematic analysis ? , 2014, 1401.1935.

[25]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[26]  Zhaohuan Zhu,et al.  PARTICLE CONCENTRATION AT PLANET-INDUCED GAP EDGES AND VORTICES. I. INVISCID THREE-DIMENSIONAL HYDRO DISKS , 2013, 1308.0648.

[27]  Bruce Macintosh,et al.  SCATTERED LIGHT FROM DUST IN THE CAVITY OF THE V4046 Sgr TRANSITION DISK , 2015, 1503.06192.

[28]  C. A. Grady,et al.  DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE , 2015, 1503.01856.

[29]  Jarron Leisenring,et al.  UvA-DARE (Digital Academic Repository) Optical Imaging Polarimetry of the LkCa 15 Protoplanetary Disk with SPHERE ZIMPOL , 2015 .

[30]  Ruobing Dong,et al.  OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS: SPIRAL ARMS OBSERVED IN SCATTERED LIGHT IMAGING CAN BE INDUCED BY PLANETS , 2015, 1507.03596.

[31]  Zhaohuan Zhu,et al.  ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES , 2014, 1408.6554.

[32]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[33]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[34]  Joel H. Kastner,et al.  PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER , 2015, 1512.01865.

[35]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[36]  A. Vigan,et al.  Constraining the mass of the planet(s) sculpting a disk cavity , 2016, 1606.07087.

[37]  Ruobing Dong,et al.  What is the Mass of a Gap-Opening Planet? , 2016, 1612.04821.

[38]  Dimitri Mawet,et al.  Three years of harvest with the vector vortex coronagraph in the thermal infrared , 2016, Astronomical Telescopes + Instrumentation.

[39]  H. Jang-Condell,et al.  THE INNER STRUCTURE OF THE TW HYA DISK AS REVEALED IN SCATTERED LIGHT , 2016, 1602.02090.

[40]  A. Boss,et al.  NEW PARALLAXES AND A CONVERGENCE ANALYSIS FOR THE TW Hya ASSOCIATION , 2016, 1610.01667.

[41]  Dimitri Mawet,et al.  The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B , 2016 .

[42]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[43]  S. Metchev,et al.  Young Stars & Planets Near the Sun, , 2016 .

[44]  Dimitri Mawet,et al.  CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY , 2016, 1612.03091.

[45]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars , 2016, Monthly Notices of the Royal Astronomical Society.

[46]  John H. Debes,et al.  Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk , 2017, 1701.03152.

[47]  F. Ménard,et al.  Cavity and other radial substructures in the disk around HD 97048 , 2016, 1609.02488.

[48]  Marc Van Droogenbroeck,et al.  VIP: Vortex Image Processing Package for High-contrast Direct Imaging , 2017, 1705.06184.

[49]  Julien H. Girard,et al.  Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE , 2016, 1610.08939.

[50]  INFRARED VIEWS OF THE TW HYDRA DISK , .