An Asynchronous Decentralized Forecasting-Aided State Estimator for Power Systems

Tracking the system states of an extensive power system is an onerous task as it estimates the power system states by processing a large measurement set. This paper proposes a new asynchronous decentralized forecasting-aided state estimator (ADFASE) to track the states of a power system. The networked power system is partitioned into smaller systems, which processes the local measurements in parallel to estimate system states of reduced dimensionality; thereby reducing the computational complexity. The subsystems then communicate the local information to neighboring subsystems, which collate the incoming information to obtain near-optimal estimates. The decentralized topology eliminates the need for any centralized infrastructure. Each processor operates in an asynchronous manner, and the information is communicated to neighboring subsystems as and when the information is processed. The information received by the subsystems are assimilated asynchronously and does not need any prior synchronization between the nodes. The performance of the proposed estimator is evaluated using IEEE 30 and 118-bus systems.

[1]  A. P. Sakis Meliopoulos,et al.  Effective Real-Time Operation and Protection Scheme of Microgrids Using Distributed Dynamic State Estimation , 2017, IEEE Transactions on Power Delivery.

[2]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part II: Approximate Model , 1970 .

[3]  J.C.S. de Souza,et al.  Forecasting-Aided State Estimation—Part I: Panorama , 2009 .

[4]  Liam Murphy,et al.  Parallel and distributed state estimation , 1995 .

[5]  H. F. Durrant-Whyte,et al.  On Distributed and Decentralized Estimation , 1992 .

[6]  Farrokh Aminifar,et al.  Cybersecurity in Distributed Power Systems , 2017, Proceedings of the IEEE.

[7]  S. Chakrabarti,et al.  Implementation of Rauch-Tung-Striebel smoother for power system dynamic state estimation in the presence of PMU measurements , 2015, 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA).

[8]  Thierry Van Cutsem,et al.  A taxonomy of multi-area state estimation methods , 2011 .

[9]  A. Monticelli State estimation in electric power systems : a generalized approach , 1999 .

[10]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[11]  Saeed Lotfifard,et al.  Distributed Dynamic State Estimation of Power Systems , 2018, IEEE Transactions on Industrial Informatics.

[12]  Ketan Rajawat,et al.  Hierarchical parallel dynamic estimator of states for interconnected power system , 2018 .

[13]  A. P. A. D. Silva,et al.  State forecasting in electric power systems , 1983 .

[14]  Th. Van Cutsem,et al.  Whither dynamic state estimation , 1990 .

[15]  Sumit Roy,et al.  Square root parallel Kalman filtering using reduced-order local filters , 1991 .

[16]  A. Sharma,et al.  An Iterative Multiarea State Estimation Approach Using Area Slack Bus Adjustment , 2016, IEEE Systems Journal.

[17]  Atif S. Debs,et al.  A Dynamic Estimator for Tracking the State of a Power System , 1970 .

[18]  M. Pavella,et al.  Dynamic state prediction and hierarchical filtering for power system state estimation , 1988, Autom..

[19]  A. Abur,et al.  Multi area state estimation using synchronized phasor measurements , 2005, IEEE Transactions on Power Systems.

[20]  S. C. Srivastava,et al.  Multi-agent-based dynamic state estimator for multi-area power system , 2016 .

[21]  Lang Tong,et al.  Hierarchical Multi-Area State Estimation via Sensitivity Function Exchanges , 2017, IEEE Transactions on Power Systems.

[22]  Arindam Ghosh,et al.  Inclusion of PMU current phasor measurements in a power system state estimator , 2010 .

[23]  Hugh F. Durrant-Whyte,et al.  A Fully Decentralized Multi-Sensor System For Tracking and Surveillance , 1993, Int. J. Robotics Res..

[24]  J. K. Mandal,et al.  Hierarchical dynamic state estimator using ANN-based dynamic load prediction , 1999 .

[25]  M. Ribbens-Pavella,et al.  A Two-Level Static State Estimator for Electric Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[26]  Xiaodong Wang,et al.  Distributed Point-Based Gaussian Approximation Filtering for Forecasting-Aided State Estimation in Power Systems , 2016, IEEE Transactions on Power Systems.