Spectrum Estimation from a Few Entries

Singular values of a data in a matrix form provide insights on the structure of the data, the effective dimensionality, and the choice of hyper-parameters on higher-level data analysis tools. However, in many practical applications such as collaborative filtering and network analysis, we only get a partial observation. Under such scenarios, we consider the fundamental problem of recovering spectral properties of the underlying matrix from a sampling of its entries. We are particularly interested in directly recovering the spectrum, which is the set of singular values, and also in sample-efficient approaches for recovering a spectral sum function, which is an aggregate sum of the same function applied to each of the singular values. We propose first estimating the Schatten $k$-norms of a matrix, and then applying Chebyshev approximation to the spectral sum function or applying moment matching in Wasserstein distance to recover the singular values. The main technical challenge is in accurately estimating the Schatten norms from a sampling of a matrix. We introduce a novel unbiased estimator based on counting small structures in a graph and provide guarantees that match its empirical performance. Our theoretical analysis shows that Schatten norms can be recovered accurately from strictly smaller number of samples compared to what is needed to recover the underlying low-rank matrix. Numerical experiments suggest that we significantly improve upon a competing approach of using matrix completion methods.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Christos Boutsidis,et al.  A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix , 2015, ArXiv.

[3]  Alexandros G. Dimakis,et al.  Distributed Estimation of Graph 4-Profiles , 2016, WWW.

[4]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[5]  Sivan Toledo,et al.  Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.

[6]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[7]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[8]  Jon M. Kleinberg,et al.  Subgraph frequencies: mapping the empirical and extremal geography of large graph collections , 2013, WWW.

[9]  Martin J. Wainwright,et al.  Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds , 2015, ICML.

[10]  Edoardo Di Napoli,et al.  Efficient estimation of eigenvalue counts in an interval , 2013, Numer. Linear Algebra Appl..

[11]  Jinwoo Shin,et al.  Approximating the Spectral Sums of Large-scale Matrices using Chebyshev Approximations , 2016, ArXiv.

[12]  Maxim Sviridenko,et al.  Variance Based Concentration and Moment Inequalities for Polynomials of Independent Random Variables: Multilinear Case , 2011 .

[13]  Ryuhei Uehara,et al.  The Number of Connected Components in Graphs and Its Applications , 2007 .

[14]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[15]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[16]  Jie Chen,et al.  How Accurately Should I Compute Implicit Matrix-Vector Products When Applying the Hutchinson Trace Estimator? , 2016, SIAM J. Sci. Comput..

[17]  Hongbo Liu,et al.  A new way to enumerate cycles in graph , 2006, Advanced Int'l Conference on Telecommunications and Int'l Conference on Internet and Web Applications and Services (AICT-ICIW'06).

[18]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[19]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[20]  M. ScholarWorks Estimating the trace of the matrix inverse by interpolating from the diagonal of an approximate inverse , 2019 .

[21]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[22]  U. Feige,et al.  Spectral techniques applied to sparse random graphs , 2005 .

[23]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[24]  James P. LeSage,et al.  Chebyshev approximation of log-determinants of spatial weight matrices , 2004, Comput. Stat. Data Anal..

[25]  Alexander Tikhomirov,et al.  On the rate of convergence to the semi-circular law , 2011, 1109.0611.

[26]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Khaled M. Elbassioni A Polynomial Delay Algorithm for Generating Connected Induced Subgraphs of a Given Cardinality , 2015, J. Graph Algorithms Appl..

[28]  Michael W. Mahoney Boyd,et al.  Randomized Algorithms for Matrices and Data , 2010 .

[29]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[30]  Gregory Valiant,et al.  Spectrum Estimation from Samples , 2016, ArXiv.

[31]  Florent Krzakala,et al.  Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation , 2015, NIPS.

[32]  Alexandr Andoni,et al.  Tight Lower Bound for Linear Sketches of Moments , 2013, ICALP.

[33]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[34]  P. Rousseeuw,et al.  Minimum volume ellipsoid , 2009 .

[35]  Donald F. Towsley,et al.  Efficiently Estimating Motif Statistics of Large Networks , 2013, TKDD.

[36]  Dimitris Achlioptas,et al.  Fast computation of low-rank matrix approximations , 2007, JACM.

[37]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[38]  Maxim Sviridenko,et al.  Bernstein-like Concentration and Moment Inequalities for Polynomials of Independent Random Variables: Multilinear Case , 2011, 1109.5193.

[39]  Alexandros G. Dimakis,et al.  Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs , 2015, KDD.

[40]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[41]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[42]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[43]  Y. Zhang,et al.  Approximate implementation of the logarithm of the matrix determinant in Gaussian process regression , 2007 .

[44]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[45]  Sewoong Oh,et al.  A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion , 2009, ArXiv.

[46]  Andreas Stathopoulos,et al.  Hierarchical Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices , 2013, SIAM J. Sci. Comput..

[47]  Jo Eidsvik,et al.  Parameter estimation in high dimensional Gaussian distributions , 2011, Stat. Comput..

[48]  David P. Woodruff,et al.  On approximating functions of the singular values in a stream , 2016, STOC.

[49]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[50]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[51]  Yu. I. Ingster,et al.  Nonparametric Goodness-of-Fit Testing Under Gaussian Models , 2002 .

[52]  Dieter Kratsch,et al.  Finding and Counting Small Induced Subgraphs Efficiently , 1995, WG.

[53]  Amir H. Banihashemi,et al.  Message-Passing Algorithms for Counting Short Cycles in a Graph , 2010, IEEE Transactions on Communications.

[54]  Uri M. Ascher,et al.  Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..

[55]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[56]  Keith M. Chugg,et al.  An algorithm for counting short cycles in bipartite graphs , 2006, IEEE Transactions on Information Theory.

[57]  R. Carbó-Dorca Smooth function topological structure descriptors based on graph-spectra , 2008 .

[58]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, ISIT.

[59]  Can M. Le,et al.  Sparse random graphs: regularization and concentration of the Laplacian , 2015, ArXiv.

[60]  Guangdong Feng,et al.  A Tensor Based Method for Missing Traffic Data Completion , 2013 .

[61]  Jinwoo Shin,et al.  Large-scale log-determinant computation through stochastic Chebyshev expansions , 2015, ICML.

[62]  Prateek Jain,et al.  Universal Matrix Completion , 2014, ICML.

[63]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[64]  David P. Woodruff,et al.  On Sketching Matrix Norms and the Top Singular Vector , 2014, SODA.

[65]  Yousef Saad,et al.  A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..

[66]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.