A mixed virtual element method for the Brinkman problem

In this paper, we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional Brinkman model of porous media flow with non-homogeneous Dirichlet boundary conditions. More precisely, we employ a dual-mixed formulation in which the only unknown is given by the pseudostress, whereas the velocity and pressure are computed via postprocessing formulae. We first recall the corresponding variational formulation, and then summarize the main mixed-VEM ingredients that are required for our discrete analysis. In particular, in order to define a calculable discrete bilinear form, whose continuous version involves deviatoric tensors, we propose two well-known alternatives for the local projector onto a suitable polynomial subspace, which allows the explicit integration of these terms. Next, we show that the global discrete bilinear form satisfies the hypotheses required by the Lax–Milgram lemma. In this way, we conclude the well-posedness of our mixed-VEM scheme and derive the associated a priori error estimates for the virtual solution as well as for the fully computable projection of it. Furthermore, we also introduce a second element-by-element postprocessing formula for the pseudostress, which yields an optimally convergent approximation of this unknown with respect to the broken ℍ(div)-norm. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are presented.

[1]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[2]  Gabriel N. Gatica,et al.  Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..

[3]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[4]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[5]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[6]  Ricardo Ruiz-Baier,et al.  A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem , 2016, Numerische Mathematik.

[7]  Rolf Stenberg,et al.  H(div)-conforming Finite Elements for the Brinkman Problem , 2011 .

[8]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[9]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[10]  Rolf Stenberg,et al.  Numerical computations with H(div)-finite elements for the Brinkman problem , 2011, Computational Geosciences.

[11]  Ricardo Ruiz-Baier,et al.  An augmented velocity–vorticity–pressure formulation for the Brinkman equations , 2015 .

[12]  Gabriel N. Gatica,et al.  Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow , 2015 .

[13]  Gabriel N. Gatica,et al.  Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.

[14]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[15]  R. Stenberg,et al.  Analysis of finite element methods for the Brinkman problem , 2010 .

[16]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[17]  L. Beirao da Veiga,et al.  Serendipity Face and Edge VEM Spaces , 2016, 1606.01048.

[18]  L. Beirao da Veiga,et al.  H(div) and H(curl)-conforming VEM , 2014, 1407.6822.

[19]  Ricardo Ruiz-Baier,et al.  Stabilized mixed approximation of axisymmetric Brinkman flows , 2015 .

[20]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[21]  Guzmán Johnny,et al.  A family of nonconforming elements for the Brinkman problem , 2012 .

[22]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[23]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[24]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[25]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[26]  Gabriel N. Gatica,et al.  A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity , 2016, Comput. Math. Appl..

[27]  Panayot S. Vassilevski,et al.  A Mixed Formulation for the Brinkman Problem , 2014, SIAM J. Numer. Anal..