Toric fiber products
暂无分享,去创建一个
[1] Luis David Garcia,et al. Polynomial Constraints of Bayesian Networks with Hidden Variables , 2022 .
[2] S. Sullivant,et al. Markov Bases of Binary Graph Models , 2003, math/0308280.
[3] Raymond Hemmecke,et al. Computing generating sets of lattice ideals 1 , 2006 .
[4] Jesús A. De Loera,et al. All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables , 2004, IPCO.
[5] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[6] Huy Tai Ha. Box-shaped matrices and the defining ideal of certain blowup surfaces , 2002 .
[7] Elizabeth S. Allman,et al. Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..
[8] Weronika Buczýnska,et al. On phylogenetic trees - a geometer's view , 2006, math/0601357.
[9] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[10] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[11] László A. Székely,et al. Fourier Calculus on Evolutionary Trees , 1993 .
[12] A. Takemura,et al. Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .
[13] Seth Sullivant,et al. Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.
[14] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[15] Seth Sullivant,et al. Gröbner Bases and Polyhedral Geometry of Reducible and Cyclic Models , 2002, J. Comb. Theory, Ser. A.
[16] Raymond Hemmecke,et al. Computing generating sets of lattice ideals , 2005 .
[17] Niels Lauritzen. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge , 2005 .
[18] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .