Toric fiber products

Abstract We introduce and study the toric fiber product of two ideals in polynomial rings that are homogeneous with respect to the same multigrading. Under the assumption that the set of degrees of the variables form a linearly independent set, we can explicitly describe generating sets and Grobner bases for these ideals. This allows us to unify and generalize some results in algebraic statistics.

[1]  Luis David Garcia,et al.  Polynomial Constraints of Bayesian Networks with Hidden Variables , 2022 .

[2]  S. Sullivant,et al.  Markov Bases of Binary Graph Models , 2003, math/0308280.

[3]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals 1 , 2006 .

[4]  Jesús A. De Loera,et al.  All Rational Polytopes Are Transportation Polytopes and All Polytopal Integer Sets Are Contingency Tables , 2004, IPCO.

[5]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[6]  Huy Tai Ha Box-shaped matrices and the defining ideal of certain blowup surfaces , 2002 .

[7]  Elizabeth S. Allman,et al.  Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..

[8]  Weronika Buczýnska,et al.  On phylogenetic trees - a geometer's view , 2006, math/0601357.

[9]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[10]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[11]  László A. Székely,et al.  Fourier Calculus on Evolutionary Trees , 1993 .

[12]  A. Takemura,et al.  Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .

[13]  Seth Sullivant,et al.  Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.

[14]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[15]  Seth Sullivant,et al.  Gröbner Bases and Polyhedral Geometry of Reducible and Cyclic Models , 2002, J. Comb. Theory, Ser. A.

[16]  Raymond Hemmecke,et al.  Computing generating sets of lattice ideals , 2005 .

[17]  Niels Lauritzen Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge , 2005 .

[18]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .