Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors

A per literature study, work of PANI (polyaniline) nanowire/TiO2 nanotube arrays with highly porous structures and good capacitive characteristics are not prepared by electrochemical methods. The authors have described the TiO2 nanotube arrays which are fabricated by simple anodization of Ti sheet in ammonium fluoride/glycerol solution. PANI nanowires were deposited on the TiO2 nanotube layer by electro-polymerization. TiO2 nanotube layer to promote the formation of a concentration gradient of aniline monomer, and thus indirectly played a role in the dynamic template. Structural and morphological characterizations indicate that the PANI nanowires and TiO2 nanotubes have diameters of 200–300 nm and 60–100 nm, respectively. The intricate cooperation of the two materials enables the supercapacitor to work in a widened 1.2-V potential window. The specific capacitance of these electrodes is around 897.35 F g−1 at a current density of 0.21 A g−1 in 0.05 M H2SO4. The modified electrodes also show high cycling stability and maintain 86.2% of the initial capacity after 1500 cycles. The coexistence of mesopores, nanowires, and nanotubes favors the fast penetration of the electrolyte, facilitates ion diffusion, and shortens the charge transfer distance, all of which lead to the superior electrochemical performance of PANI nanowire/TiO2 nanotube arrays.

[1]  Yumeng Shi,et al.  CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor , 2014 .

[2]  Zhixin Chen,et al.  TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries , 2014 .

[3]  Jun Yan,et al.  Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors , 2013 .

[4]  Zhigang Zhao,et al.  Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. , 2014, Nano letters.

[5]  Hui Peng,et al.  Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts , 2014 .

[6]  C. Yue,et al.  Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors , 2014 .

[7]  J. Xie,et al.  Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors , 2014 .

[8]  Hexing Li,et al.  Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation , 2015 .

[9]  D. Zhao,et al.  TiO2 interpenetrating networks decorated with SnO2 nanocrystals: Enhanced activity of selective catalytic reduction of NO with NH3 , 2015 .

[10]  Min-Young Cho,et al.  A Novel High‐Energy Hybrid Supercapacitor with an Anatase TiO2–Reduced Graphene Oxide Anode and an Activated Carbon Cathode , 2013 .

[11]  Liu Deng,et al.  Construction of highly ordered polyaniline nanowires and their applications in DNA sensing. , 2014, Biosensors & bioelectronics.

[12]  Chang Yu,et al.  Block copolymer-guided fabrication of shuttle-like polyaniline nanoflowers with radiating whiskers for application in supercapacitors , 2015 .

[13]  Zhian Zhang,et al.  Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. , 2011, Nanoscale.

[14]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[15]  R. K. Jena,et al.  Synthesis of graphene/vitamin C template-controlled polyaniline nanotubes composite for high performance supercapacitor electrode , 2014 .

[16]  Teng Zhai,et al.  TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors , 2013 .

[17]  C. Das,et al.  Growth of Vertically Aligned Tunable Polyaniline on Graphene/ZrO2 Nanocomposites for Supercapacitor Energy‐Storage Application , 2014 .

[18]  Hua Zhang,et al.  TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode , 2014 .

[19]  Ping Liu,et al.  3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors , 2014 .

[20]  Md Azahar Ali,et al.  Self assembled DC sputtered nanostructured rutile TiO₂ platform for bisphenol A detection. , 2015, Biosensors & bioelectronics.

[21]  Gengping Jiang,et al.  High voltage supercapacitors using hydrated graphene film in a neutral aqueous electrolyte , 2011 .

[22]  Changjian Lin,et al.  Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel , 2014 .

[23]  Jun Yang,et al.  Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors , 2013 .

[24]  F. Gobal,et al.  Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor , 2013 .

[25]  G. Samu,et al.  Photoelectrochemical Infiltration of a Conducting Polymer (PEDOT) into Metal-Chalcogenide Decorated TiO2 Nanotube Arrays , 2015 .

[26]  Hyunsik Im,et al.  Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes , 2014 .

[27]  M. Liu,et al.  Enhanced photovoltaic performance of CdS quantum dots sensitized highly oriented two-end-opened TiO2 nanotubes array membrane , 2014 .

[28]  Sheng Xu,et al.  Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications , 2014 .

[29]  He Zhou,et al.  Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors , 2014 .

[30]  Jin-Ming Wu,et al.  A facile solution-based approach to a photocatalytic active branched one-dimensional TiO2 array , 2015 .

[31]  Gleb Yushin,et al.  Detonation Nanodiamond and Onion‐Like‐Carbon‐Embedded Polyaniline for Supercapacitors , 2010 .

[32]  M. Kotal,et al.  Polyaniline-carbon nanofiber composite by a chemical grafting approach and its supercapacitor application. , 2013, ACS applied materials & interfaces.

[33]  Gang Wang,et al.  A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications , 2014 .

[34]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[35]  Norio Shinya,et al.  Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors , 2011 .

[36]  Yiyu Feng,et al.  Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor , 2013 .

[37]  Zhengping Zhou,et al.  Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors , 2014 .

[38]  Gengfeng Zheng,et al.  Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe2O3 nanotube anodes , 2014 .

[39]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[40]  Li Wang,et al.  Graphene-based polyaniline nanocomposites: preparation, properties and applications , 2014 .

[41]  Guocheng Yang,et al.  Synthesis of vertical aligned TiO2@polyaniline core–shell nanorods for high-performance supercapacitors , 2015 .

[42]  Y. Tong,et al.  Flexible symmetrical planar supercapacitors based on multi-layered MnO2/Ni/graphite/paper electrodes with high-efficient electrochemical energy storage , 2014 .

[43]  Tae‐Woo Lee,et al.  Controlled TiO2 Nanotube Arrays as an Active Material for High Power Energy-Storage Devices , 2009 .

[44]  Hui Wu,et al.  High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach , 2014 .

[45]  Xiangshan Chen,et al.  A novel TiO2 nanofiber supported PdAg catalyst for methanol electro-oxidation , 2013 .

[46]  Zunxian Yang,et al.  Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries , 2014 .

[47]  Ping Yang,et al.  Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. , 2014, ACS applied materials & interfaces.

[48]  C. Lokhande,et al.  Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes , 2014 .

[49]  Jung-Soo Lee,et al.  Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. , 2013, ACS nano.

[50]  Tiezhu Zhang,et al.  Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability , 2014 .

[51]  V. Pavlínek,et al.  Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes , 2013 .

[52]  Soo-Jin Park,et al.  Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes , 2014 .

[53]  M. Schwab,et al.  Screen‐Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks , 2013 .

[54]  François Béguin,et al.  High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte , 2010 .

[55]  M. Singh,et al.  A novel configuration of electrical double layer capacitor with plastic crystal based gel polymer electrolyte and graphene nano-platelets as electrodes: A high rate performance , 2015 .

[56]  F. Béguin,et al.  Microporous carbons finely-tuned by cyclic high-pressure low-temperature oxidation and their use in electrochemical capacitors , 2012 .

[57]  Soo‐Hyoung Lee,et al.  Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. , 2013, Chemical communications.