SnO2:TiO2 hybrid nanocrystals as electron transport layer for high-efficiency and stable planar perovskite solar cells

[1]  Yantao Shi,et al.  Amorphous F‐doped TiOx Caulked SnO2 Electron Transport Layer for Flexible Perovskite Solar Cells with Efficiency Exceeding 22.5% , 2023, Advanced Functional Materials.

[2]  S. Feng,et al.  Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[3]  Bo-Tau Liu,et al.  Passivation and Energy-Level Change of the SnO2 Electron Transport Layer by Reactive Titania for Perovskite Solar Cells , 2022, Journal of Alloys and Compounds.

[4]  Yukai Wang,et al.  Improving the performance of perovskite solar cells via TiO2 electron transport layer prepared by direct current pulsed magnetron sputtering , 2022, Journal of Alloys and Compounds.

[5]  A. Selskis,et al.  Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells , 2022, Materials.

[6]  S. Seok,et al.  SnO2–TiO2 Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells , 2022, ACS Energy Letters.

[7]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[8]  K. Zhu,et al.  Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells , 2022, Advanced materials.

[9]  Sangeeta Singh,et al.  Efficient and stable perovskite solar cells using the tungsten trioxide as an interfacial passivation layer , 2022, Materials Letters.

[10]  A. Uddin,et al.  Progress and Challenges of SnO2 Electron Transport Layer for Perovskite Solar Cells: A Critical Review , 2022, Solar RRL.

[11]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[12]  X. Jia,et al.  Stable High-Performance Perovskite Solar Cells via Passivation of the Grain Boundary and Interface , 2021, ACS Applied Energy Materials.

[13]  Wen-Hau Zhang,et al.  Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells , 2021, Energy & Environmental Science.

[14]  M. Saremi,et al.  Study of performance and stability of hole transport layer-free perovskite solar cells with modified electron transport layer , 2021, Journal of Materials Science: Materials in Electronics.

[15]  Chun-Guey Wu,et al.  Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells. , 2021, ACS applied materials & interfaces.

[16]  S. Zakeeruddin,et al.  Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2 , 2021 .

[17]  M. Nazeeruddin,et al.  SnO2/TiO2 Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells , 2021 .

[18]  Thomas G. Allen,et al.  Tin Oxide Electron‐Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells , 2021, Advanced materials.

[19]  Hongwei Zhu,et al.  Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24. , 2021, Journal of the American Chemical Society.

[20]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[21]  Steven Frederick Durrant,et al.  SnO2/ZnO Heterostructure as an Electron Transport Layer for Perovskite Solar Cells , 2021, Materials Research.

[22]  D. Ahmed,et al.  Green Synthesis of Eco-Friendly Graphene Quantum Dots for Highly Efficient Perovskite Solar Cells , 2020 .

[23]  Shangfeng Yang,et al.  Functionalization of fullerene materials toward applications in perovskite solar cells , 2020 .

[24]  B. Bahrami,et al.  High-Efficiency Perovskite Solar Cells Enabled by Anatase TiO2 Nanopyramid Arrays with Oriented Electric Field. , 2020, Angewandte Chemie.

[25]  J. Miao,et al.  Electron Transporting Bilayer of SnO 2 and TiO 2 Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells , 2019, Solar RRL.

[26]  M. Wienk,et al.  Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells , 2019, Advanced Functional Materials.

[27]  N. Park,et al.  Gradient Sn-Doped Heteroepitaxial Film of Faceted Rutile TiO2 as an Electron Selective Layer for Efficient Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[28]  J. Bisquert,et al.  Perovskite Solar Cell Modeling Using Light- and Voltage-Modulated Techniques , 2019, The Journal of Physical Chemistry C.

[29]  Shangfeng Yang,et al.  Low‐Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells , 2019, Advanced materials.

[30]  Q. Meng,et al.  Fullerene derivative anchored SnO2 for high-performance perovskite solar cells , 2018 .

[31]  Ruixin Ma,et al.  Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer , 2018, Solar Energy.

[32]  Yi-Bing Cheng,et al.  Recent progress in hybrid perovskite solar cells based on n-type materials , 2017 .

[33]  Yang Yang,et al.  Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. , 2017, Nano letters.

[34]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[35]  Q. Yan,et al.  Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 10(8) cm(-3). , 2016, Journal of the American Chemical Society.

[36]  Kug‐Seung Lee,et al.  Structural investigation of SnO2 catalytic nanoparticles doped with F and Sb , 2014 .

[37]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[38]  T. Umeyama,et al.  Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices , 2014 .

[39]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[40]  A. Salleo,et al.  Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility , 2011, 1108.2756.

[41]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.