Sharp bounds of Jensen type for the generalized Sugeno integral

Abstract In this paper we provide two-sided attainable bounds of Jensen type for the generalized Sugeno integral of any measurable function. The results extend the previous results of Roman-Flores et al. for increasing functions and Abbaszadeh et al. for convex and concave functions. We also give corrections of some results of Abbaszadeh et al. As a by-product, we obtain sharp inequalities for symmetric integral of Grabisch. To the best of our knowledge, the results in the real-valued functions context are presented for the first time here.

[1]  Jun Kawabe,et al.  Weak convergence of nonadditive measures based on nonlinear integral functionals , 2016, Fuzzy Sets Syst..

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  Radko Mesiar,et al.  On some advanced type inequalities for Sugeno integral and T-(S-)evaluators , 2012, Inf. Sci..

[4]  A. Rosenthal,et al.  What are Set Functions , 1948 .

[5]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[6]  Michel Grabisch,et al.  The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..

[7]  Didier Dubois,et al.  Generalized qualitative Sugeno integrals , 2017, Inf. Sci..

[8]  J. Caballero,et al.  A Cauchy–Schwarz type inequality for fuzzy integrals , 2010 .

[9]  Endre Pap,et al.  A representation of a comonotone-v-additive and monotone functional by two Sugeno integrals , 2005, Fuzzy Sets Syst..

[10]  Endre Pap,et al.  Generalization of the Jensen’s inequality for pseudo-integral , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[11]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[12]  Josefa Caballero,et al.  A Markov-type inequality for seminormed fuzzy integrals , 2013, Appl. Math. Comput..

[13]  A. Ebadian,et al.  An equivalent condition to the Jensen inequality for the generalized Sugeno integral , 2017, Journal of Inequalities and Applications.

[14]  Radko Mesiar,et al.  Generalized expectation with general kernels on g-semirings and its applications , 2017 .

[15]  Tiago Mendonça da Costa,et al.  Jensen's inequality type integral for fuzzy-interval-valued functions , 2017, Fuzzy Sets Syst..

[16]  G. Klir,et al.  Generalized Measure Theory , 2008 .

[17]  Oscar Castillo,et al.  Face recognition using modular neural networks and the fuzzy Sugeno integral for response integration: Research Articles , 2005 .

[18]  Sadegh Abbaszadeh,et al.  Jensen-type inequalities for Sugeno integral , 2017, Inf. Sci..

[19]  Didier Dubois,et al.  Generalized Sugeno Integrals , 2016, IPMU.

[20]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..

[21]  Vicenç Torra,et al.  The interpretation of fuzzy integrals and their application to fuzzy systems , 2006, Int. J. Approx. Reason..

[22]  Vicenç Torra,et al.  Fuzzy measures and integrals in evaluation of strategies , 2007, Inf. Sci..

[23]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[24]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[25]  Vicenç Torra,et al.  The $h$-Index and the Number of Citations: Two Fuzzy Integrals , 2008, IEEE Transactions on Fuzzy Systems.

[26]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[27]  Michal Boczek,et al.  On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application , 2015, Kybernetika.

[28]  N. Shilkret Maxitive measure and integration , 1971 .

[29]  Mingsheng Ying,et al.  Linguistic quantifiers modeled by Sugeno integrals , 2006, Artif. Intell..

[30]  Didier Dubois,et al.  The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[31]  Sadegh Abbaszadeh,et al.  Jensen Inequality with Subdifferential for Sugeno Integral , 2016, MICAI.

[32]  Yi-Chung Hu,et al.  Sugeno fuzzy integral for finding fuzzy if-then classification rules , 2007, Appl. Math. Comput..

[33]  Michal Boczek,et al.  On the Jensen type inequality for generalized Sugeno integral , 2014, Inf. Sci..

[34]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[35]  Marek Kaluszka,et al.  On risk aversion under fuzzy random data , 2017, Fuzzy Sets Syst..

[36]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals I: Properties and characterizations , 2015, Fuzzy Sets Syst..

[37]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[38]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[39]  Michel Grabisch,et al.  Set Functions, Games and Capacities in Decision Making , 2016 .

[40]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[41]  Constantin P. Niculescu,et al.  Convex Functions and Their Applications: A Contemporary Approach , 2005 .