One-pot lower olefins production from CO2 hydrogenation

[1]  Guoxiong Wang,et al.  Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels , 2022, Transactions of Tianjin University.

[2]  A. Bhan,et al.  Methanol-to-olefins catalysis on window-cage type zeolites/zeotypes with syngas co-feeds: Understanding syngas-to-olefins chemistry , 2022, Journal of Catalysis.

[3]  Xinlong Ma,et al.  Ambient-pressure hydrogenation of CO2 into long-chain olefins , 2022, Nature Communications.

[4]  W. Fan,et al.  Catalytic Performance of Various Zinc-Based Binary Metal Oxides/H-RUB-13 for Hydrogenation of CO2 , 2022, Industrial & Engineering Chemistry Research.

[5]  C. Cheng,et al.  Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide , 2021, Process Safety and Environmental Protection.

[6]  Jingguang G. Chen,et al.  Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics , 2021, Chem.

[7]  J. Gascón,et al.  CO2 hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO2/zeolite catalysts , 2021 .

[8]  C. Cheng,et al.  CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst , 2021, Topics in Catalysis.

[9]  L. Yao,et al.  Catalytic activity of SAPO-34 molecular sieves prepared by using palygorskite in the synthesis of light olefins via CO2 hydrogenation , 2020 .

[10]  J. Gascón,et al.  Acidity modification of ZSM-5 for enhanced production of light olefins from CO2 , 2020 .

[11]  C. Mondelli,et al.  Role of Zirconia in Indium Oxide-Catalyzed CO2 Hydrogenation to Methanol , 2020 .

[12]  N. Tsubaki,et al.  Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation , 2019 .

[13]  A. Russell,et al.  CO2 hydrogenation to high-value products via heterogeneous catalysis , 2019, Nature Communications.

[14]  Zhongmin Liu,et al.  Recent Progress in Methanol‐to‐Olefins (MTO) Catalysts , 2019, Advanced materials.

[15]  B. Puértolas,et al.  Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation , 2019, Nature Communications.

[16]  W. Zhou,et al.  New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. , 2019, Chemical Society reviews.

[17]  A. Bhan,et al.  Mechanistic Basis for Effects of High-Pressure H2 Cofeeds on Methanol-to-Hydrocarbons Catalysis over Zeolites , 2019, ACS Catalysis.

[18]  J. Gascón,et al.  Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics , 2019, ACS Catalysis.

[19]  I. A. Da Silva,et al.  Conversion of CO2 to Light Olefins Over Iron-Based Catalysts Supported on Niobium Oxide , 2019, Front. Energy Res..

[20]  X. Lai,et al.  Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution , 2019, Fuel.

[21]  Zhongmin Liu,et al.  Achieving a Superlong Lifetime in the Zeolite-Catalyzed MTO Reaction under High Pressure: Synergistic Effect of Hydrogen and Water , 2019, ACS Catalysis.

[22]  N. R. Shiju,et al.  UvA-DARE (Digital Academic Repository) A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins , 2019 .

[23]  Zhongmin Liu,et al.  Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility , 2018, Journal of Catalysis.

[24]  L. Yao,et al.  Synthesis of light olefins from CO2 hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular sieves , 2018, Applied Clay Science.

[25]  Xiao Jiang,et al.  Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite , 2018, Journal of CO2 Utilization.

[26]  Zhongmin Liu,et al.  Coupling of Methanol and Carbon Monoxide over H-ZSM-5 to Form Aromatics , 2018, Angewandte Chemie.

[27]  Yuhan Sun,et al.  Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts , 2018, Journal of Catalysis.

[28]  Jihong Yu,et al.  The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion , 2018 .

[29]  Jing Tian,et al.  Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO2 Direct Hydrogenation to Light Olefins. , 2018, ACS applied materials & interfaces.

[30]  Yuhan Sun,et al.  Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis , 2018 .

[31]  A. Bhan,et al.  The critical role of methanol pressure in controlling its transfer dehydrogenation and the corresponding effect on propylene-to-ethylene ratio during methanol-to-hydrocarbons catalysis on H-ZSM-5 , 2017 .

[32]  B. Liu,et al.  Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts , 2017 .

[33]  Hailong Liu,et al.  Highly Selective Conversion of Carbon Dioxide to Lower Olefins , 2017 .

[34]  G. Bonura,et al.  Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins , 2017 .

[35]  P. Forzatti,et al.  CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst , 2017 .

[36]  Abdullah M. Asiri,et al.  Initial Carbon–Carbon Bond Formation during the Early Stages of the Methanol‐to‐Olefin Process Proven by Zeolite‐Trapped Acetate and Methyl Acetate , 2016, Angewandte Chemie.

[37]  Antonio J. Martín,et al.  Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. , 2016, Angewandte Chemie.

[38]  Zhongmin Liu,et al.  Methanol to Olefins (MTO): From Fundamentals to Commercialization , 2015 .

[39]  W. Shafer,et al.  Fischer–Tropsch Synthesis: Effect of Potassium on Activity and Selectivity for Oxide and Carbide Fe Catalysts , 2013, Catalysis Letters.

[40]  J. Gibbins,et al.  Carbon Capture and Storage , 2008 .

[41]  K. Jun,et al.  Methanol conversion on SAPO-34 catalysts prepared by mixed template method , 2007 .

[42]  Avelino Corma,et al.  Light cracked naphtha processing: Controlling chemistry for maximum propylene production , 2005 .

[43]  De Chen,et al.  Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation , 2000 .