Multi-objective optimal design of laminated composite skirt using hybrid NSGA

In this paper a new hybridised version of non-dominated sorting genetic algorithm (NSGA) is proposed to solve combinatorial optimisation problems associated with laminated composite structures. The proposed algorithm is used to optimise the design of hybrid laminated fibre composite skirt of solid rocket motor, subjected to a buckling strength constraint and an overstressing strength constraint under aerodynamic torque and axial thrust. The present investigations involve in determining the best laminate configuration to minimise the weight as well as cost of the skirt through multi-objective optimisation. Buckling strength and overstressing strength of the composite cylindrical skirt are analysed using classical laminate theory. Tsai-Wu failure criterion is employed to assess the first ply failure, and failure strength is described by an overstressing load level factor. The superiority of the proposed hybrid algorithm is demonstrated by comparing with the originally proposed NSGA algorithm. The studies presented in this paper clearly indicate that the proposed modification to the NSGA improves the convergence properties quite appreciably.

[1]  A. Rama Mohan Rao,et al.  Multi-objective Optimal Design of Hybrid Laminate Composite Structures Using Scatter Search , 2009 .

[2]  Xiaorong He,et al.  Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP , 2008, Comput. Chem. Eng..

[3]  Satchi Venkataraman,et al.  Optimization of Composite Panels - A Review , 1999 .

[4]  R. Reiss,et al.  Maximum Frequency Design of Symmetric Angle-ply Laminates , 1987 .

[5]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[6]  Y. Xie,et al.  Buckling optimization of hybrid-fiber multilayer-sandwich cylindrical shells under external lateral pressure , 1996 .

[7]  R. Grover,et al.  Development of an advanced composite rocket motor case for internal and external load environments , 1984 .

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Mark Walker,et al.  Minimum weight design of composite hybrid shells via symbolic computation , 1997 .

[10]  S. Adali,et al.  Lay-up optimization of laminated plates under buckling loads , 1995 .

[11]  Mark Walker,et al.  Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbuckling strength using continuous and discrete ply angles , 1996 .

[12]  J. S. Hansen,et al.  Optimal Design of Laminated-Composite Circular-Cylindrical Shells Subjected to Combined Loads , 1988 .

[13]  Biswajit Tripathy,et al.  Stiffened composite axisymmetric shells-optimum lay-up for buckling by ranking , 1993 .

[14]  M. H. Sadr,et al.  Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm , 2012 .

[15]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[16]  A. Rama Mohan Rao,et al.  A scatter search algorithm for stacking sequence optimisation of laminate composites , 2005 .

[17]  M. Lahanas,et al.  A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. , 2003, Physics in medicine and biology.

[18]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[19]  Francis Mard,et al.  Design, manufacture and test of the composite case for ERINT-1 solid rocket motor , 1993 .

[20]  A. A. Smerdov,et al.  A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure , 2000 .

[21]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[22]  R. Zimmermann,et al.  Quick optimum buckling design of axially compressed, fiber composite cylindrical shells.(peer review) , 1995 .

[23]  C. Bert Optimal design of a composite-material plate to maximize its fundamental frequency , 1977 .

[24]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  J. Onoda,et al.  Optimal laminate configurations of cylindrical shells for axial buckling , 1985 .

[26]  Michael J. Pappas,et al.  Optimal laminated composite shells for buckling and vibration , 1983 .

[27]  A. Rama Mohan Rao,et al.  A Meta‐Heuristic Algorithm for Multi‐Objective Optimal Design of Hybrid Laminate Composite Structures , 2010, Comput. Aided Civ. Infrastructure Eng..

[28]  Jun Wu,et al.  Improving NSGA-II Algorithm Based on Minimum Spanning Tree , 2008, SEAL.

[29]  B. D. Agarwal,et al.  Analysis and Performance of Fiber Composites , 1980 .

[30]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[31]  A. Rama Mohan Rao,et al.  Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm , 2012 .

[32]  Akira Todoroki,et al.  Improvement of Design Reliability for Buckling Load Maximization of Composite Cylinder Using Genetic Algorithm with Recessive-Gene-Like Repair , 1999 .

[33]  Sarp Adali,et al.  Minimum sensitivity design of laminated shells under axial load and external pressure , 2001 .

[34]  A. Rama Mohan Rao,et al.  Discrete hybrid PSO algorithm for design of laminate composites with multiple objectives , 2011 .

[35]  S. Timoshenko Theory of Elastic Stability , 1936 .

[36]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[37]  A. Rama Mohan Rao,et al.  Multi-objective optimal design of laminate composite shells and stiffened shells , 2012 .

[38]  Kalyanmoy Deb,et al.  A robust evolutionary framework for multi-objective optimization , 2008, GECCO '08.

[39]  M. Teshnehlab,et al.  Improving the Non-dominate Sorting Genetic Algorithm for Multi-objective Optimization , 2007, 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007).

[40]  Jian-Bo Yang,et al.  Multiple Criteria Decision Support in Engineering Design , 1998 .

[41]  M. Walker,et al.  A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis , 2003 .

[42]  T. R. Tauchert,et al.  Multiobjective Design of Symmetrically Laminated Plates , 1992 .

[43]  Mark Walker,et al.  Multiobjective design of laminated cylindrical shells for maximum torsional and axial buckling loads , 1997 .

[44]  Antonio Ruiz,et al.  Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors , 2010 .

[45]  George E. Weeks,et al.  Optimum design of composite laminates using genetic algorithms , 1992 .

[46]  G. Sun,et al.  A practical approach to optimal design of laminated cylindrical shells for buckling , 1989 .