Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade

The correct prediction of flexo-torsional deformation is of capital importance for the future development of advanced wind-turbine blade prototypes. Coupling between bending and twisting can be used to reduce extreme loads and improve fatigue performance. This is the principle of the adaptive blades, where the incremental loads are reduced when, as the blade bends, the flexo-torsional modes of the blade structure produce a change in twist, and so in the angle of attack, modifying the lift force acting on the blade sections. Bend-twist coupling could be achieved either by modifying the internal structure (structural adaptiveness), or by readapting the geometry of the blade (geometrical adaptiveness). These two techniques can be used independently or combined, complementing each other.

[1]  Fernando L. Ponta Kinematic Laplacian Equation Method: A Velocity-Vorticity Formulation for the Navier-Stokes Equations , 2006 .

[2]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[3]  Dewey H. Hodges,et al.  Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis , 2005 .

[4]  J. W. Humberston Classical mechanics , 1980, Nature.

[5]  Hans-Ulrich Meier,et al.  German Development of the Swept Wing: 1935-1945 , 2010 .

[6]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[7]  D. C. Janetzke,et al.  Theoretical and experimental power from large horizontal-axis wind turbines , 1982 .

[8]  David A. Peters,et al.  Theoretical prediction of dynamic inflow derivatives , 1980 .

[9]  James E. Locke,et al.  The Implementation of Braided Composite Materials in the Design of a Bend-Twist Coupled Blade , 2002 .

[10]  S. Powles The effects of tower shadow on the dynamics of a horizontal-axis witn turbine , 1983 .

[11]  Christian Bak,et al.  Influence from blade-tower interaction on fatigue loads and dynamics (poster) , 2001 .

[12]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[13]  Jason Jonkman,et al.  Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling , 2008 .

[14]  Carlos E. S. Cesnik,et al.  On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .

[15]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[16]  Curran Crawford Re‐examining the precepts of the blade element momentum theory for coning rotors , 2006 .

[17]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[18]  H. J. Cunningham,et al.  Study of Effects of Sweep on the Flutter of Cantilever Wings , 1950 .

[19]  Richard Thruelsen The Grumman story , 1976 .

[20]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[21]  Fernando L. Ponta,et al.  Structural Analysis of Wind-Turbine Blades by a Generalized Timoshenko Beam Model , 2010 .

[22]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[23]  William F Hilton,et al.  High-speed aerodynamics , 1951 .

[24]  Yongqian Liu,et al.  Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines , 2015 .

[25]  Curran Crawford,et al.  Updating and Optimization of a Coning Rotor Concept , 2008 .

[26]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[27]  Peter Jamieson,et al.  Innovation in Wind Turbine Design , 2011 .

[28]  Jason Jonkman,et al.  OC3—Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes , 2007 .