Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant

This paper presents and analyses an engineered expected hypervolume improvement (EHVI) algorithm for solving the problem of PID parameter tuning and the optimization problem of controlling the substrate feed of a biogas plant. The EHVI is the expected value of the increment of the hypervolume indicator given a Pareto front approximation and a predictive multivariate Gaussian distribution of a new point. To solve this problem, S-metric selection-based efficient global optimization (SMS-EGO), EHVI based efficient global optimization (EHVIEGO) and SMS-EMOA are used and compared in both the PID parameter tuning problem and for biogas plant feed optimization. The results of the experiments show that surrogate model based algorithms perform better than SMS-EMOA, and the performance of EHVI-EGO is slightly better than SMS-EGO.

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  Shigeru Obayashi,et al.  Comparison of the criteria for updating Kriging response surface models in multi-objective optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[3]  Michael T. M. Emmerich,et al.  Faster Exact Algorithms for Computing Expected Hypervolume Improvement , 2015, EMO.

[4]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[5]  Tom Dhaene,et al.  Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization , 2014, J. Glob. Optim..

[6]  Intan Zaurah Mat Darus,et al.  PID controller tuning using evolutionary algorithms , 2012 .

[7]  D. Dennis,et al.  SDO : A Statistical Method for Global Optimization , 1997 .

[8]  Wolfgang Ponweiser,et al.  On Expected-Improvement Criteria for Model-based Multi-objective Optimization , 2010, PPSN.

[9]  Thomas Bäck,et al.  Ant Colony Algorithms for the Dynamic Vehicle Routing Problem with Time Windows , 2013, IWINAC.

[10]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[11]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[12]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[13]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[14]  Daniel Gaida,et al.  Dynamic real-time substrate feed optimization of anaerobic co-digestion plants , 2014 .

[15]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .

[16]  Éric Marchand,et al.  Real-time markerless tracking for augmented reality: the virtual visual servoing framework , 2006, IEEE Transactions on Visualization and Computer Graphics.

[17]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[18]  Michael T. M. Emmerich,et al.  Hypervolume-based expected improvement: Monotonicity properties and exact computation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[19]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[20]  Michael Emmerich,et al.  Metamodel Assisted Multiobjective Optimisation Strategies and their Application in Airfoil Design , 2004 .

[21]  Seán McLoone,et al.  Optimal Control of Biogas Plants using Nonlinear Model Predictive Control , 2011 .

[22]  M. Bongards,et al.  Nonlinear model predictive substrate feed control of biogas plants , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[23]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[24]  Wolfgang Gründinger,et al.  The Renewable Energy Sources Act (EEG) , 2017 .

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Pierre Borne,et al.  Tuning PID Controller Using Multiobjective Ant Colony Optimization , 2012, Appl. Comput. Intell. Soft Comput..

[27]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[28]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[29]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[30]  Carlos A. Coello Coello,et al.  Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition , 2011, MCPR.

[31]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..