Trellis coded quantization

Trellis coded quantization (TCQ) is an efficient form of multidimensional quantization that achieves portions of the possible point density, space filling, and granular gains promised by vector quantization. For memoryless sources, the combination of TCQ and a suitable entropy code can provide performance within 0.5 dB of the rate-distortion limit.

[1]  Michael W. Marcellin,et al.  On entropy-constrained trellis coded quantization , 1994, IEEE Trans. Commun..

[2]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[3]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[4]  Min Wang,et al.  Entropy-constrained trellis-coded quantization , 1992, IEEE Trans. Inf. Theory.

[5]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[6]  이충웅,et al.  블럭간의 상관성을 이용한 엔트로피제한 벡터 양자화 ( Entropy-Constrained Vector Quantization using Interblock correlation ) , 1993 .

[7]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[8]  Thomas R. Fischer,et al.  Image subband coding using arithmetic coded trellis coded quantization , 1995, IEEE Trans. Circuits Syst. Video Technol..

[9]  Philip A. Chou,et al.  Entropy-constrained vector quantization , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[11]  N. J. A. Sloane,et al.  Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.

[12]  Nariman Farvardin,et al.  Optimum quantizer performance for a class of non-Gaussian memoryless sources , 1984, IEEE Trans. Inf. Theory.

[13]  Robert M. Gray,et al.  High-resolution quantization theory and the vector quantizer advantage , 1989, IEEE Trans. Inf. Theory.