Thermo-optic all-optical devices based on two-dimensional materials

In this paper, we review our recent work on thermo-optic all-optical devices based on two-dimensional (2D) materials. The unique properties of 2D materials enable fast and highly efficient thermo-optic control of light. A few all-optical devices are demonstrated based on various thermo-optic mechanisms. Both fiber and integrated devices will be shown.

[1]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) (Laser Photonics Rev. 12(2)/2018) , 2018 .

[2]  Gong-Ru Lin,et al.  Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles , 2014 .

[3]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[4]  Gong-Ru Lin,et al.  Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s , 2015, Scientific Reports.

[5]  Dianyuan Fan,et al.  Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability , 2017 .

[6]  L. Tong,et al.  All-optical graphene modulator based on optical Kerr phase shift , 2016 .

[7]  Hao Wang,et al.  Q-switched fiber laser based on transition metal dichalcogenides MoS(2), MoSe(2), WS(2), and WSe(2). , 2015, Optics express.

[8]  Wei Li,et al.  Ultrafast all-optical graphene modulator. , 2014, Nano letters.

[9]  J. Coleman,et al.  Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. , 2013, ACS nano.

[10]  Wenjun Liu,et al.  Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. , 2017, Nanoscale.

[11]  Shuangchen Ruan,et al.  A practical topological insulator saturable absorber for mode-locked fiber laser , 2015, Scientific Reports.

[12]  Jianlin Zhao,et al.  Graphene-assisted all-fiber phase shifter and switching , 2015 .

[13]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[14]  Sailing He,et al.  Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters , 2016 .

[15]  D. Tsai,et al.  Photostriction of strontium ruthenate , 2017, Nature Communications.

[16]  Feng Zhang,et al.  All‐Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions , 2018 .

[17]  M. Liu,et al.  2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. , 2013, Optics letters.

[18]  Jun Wang,et al.  WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. , 2015, Optics express.

[19]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[20]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[21]  Jaroslaw Sotor,et al.  Black phosphorus saturable absorber for ultrashort pulse generation , 2015 .

[22]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[23]  Liyong Ren,et al.  All-optical control of microfiber resonator by graphene's photothermal effect , 2016 .

[24]  C. Jagadish,et al.  Nonlinear Absorption Applications of CH3NH3PbBr3 Perovskite Crystals , 2018 .

[25]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[26]  Jun Wang,et al.  All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber. , 2017, Optics express.

[27]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[28]  Wen Zhou,et al.  Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator. , 2017, Optics letters.

[29]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[30]  Jun Wang,et al.  WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers , 2014 .

[31]  Meng Zhang,et al.  Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser , 2015, Nano Research.

[32]  J R Taylor,et al.  Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS₂). , 2014, Optics express.

[33]  Jianping Chen,et al.  All-optical modulator based on MoS2-PVA thin film , 2018 .

[34]  Min Zhou,et al.  Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. , 2010, Optics letters.

[35]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[36]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[37]  Gong-Ru Lin,et al.  Using n- and p-Type Bi2Te3 Topological Insulator Nanoparticles To Enable Controlled Femtosecond Mode-Locking of Fiber Lasers , 2015 .

[38]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[39]  Ciyuan Qiu,et al.  All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect , 2017, Scientific Reports.

[40]  Yu-Chieh Chi,et al.  Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching , 2017 .

[41]  S. Xiao,et al.  Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides , 2016, Nature communications.

[42]  Jianlin Zhao,et al.  WS2 mode-locked ultrafast fiber laser , 2015, Scientific Reports.

[43]  Gong-Ru Lin,et al.  Nonstoichiometric SiC Bus/Ring Waveguide Based All-Optical Data Format Follower and Inverter , 2016 .

[44]  Meng Liu,et al.  Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. , 2015, Optics express.

[45]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[46]  Shimin Zhao,et al.  Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2 , 2017, Scientific Reports.