Universal polar codes for more capable and less noisy channels and sources

We prove two results on the universality of polar codes for source coding and channel communication. First, we show that for any polar code built for a source PX,Z there exists a slightly modified polar code-having the same rate, the same encoding and decoding complexity and the same error rate-that is universal for every source PX,Y when using successive cancellation decoding, at least when the channel PY|X is more capable than PZ|X and PX is such that it maximizes I(X; Y )-I(X;Z) for the given channels PY|X and PZ|X. This result extends to channel coding for discrete memoryless channels. Second, we prove that polar codes using successive cancellation decoding are universal for less noisy discrete memoryless channels.

[1]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[2]  Shlomo Shamai,et al.  On Broadcast Channels With Binary Inputs and Symmetric Outputs , 2010, IEEE Transactions on Information Theory.

[3]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[4]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[5]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[6]  Joseph M. Renes,et al.  Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization , 2013, ASIACRYPT.

[7]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[8]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[9]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[10]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[11]  Lele Wang,et al.  Universal polarization , 2014, ISIT.

[12]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[13]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[14]  Rüdiger L. Urbanke,et al.  The compound capacity of polar codes , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[15]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[16]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[17]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.

[18]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[19]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[20]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[21]  Rüdiger L. Urbanke,et al.  Universal polar codes , 2013, 2014 IEEE International Symposium on Information Theory.

[22]  Joseph M Renes,et al.  Efficient polar coding of quantum information. , 2011, Physical review letters.

[23]  Alexander Vardy,et al.  Constructing polar codes for non-binary alphabets and MACs , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  Mine Alsan Universal polar decoding with channel knowledge at the encoder , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[25]  Chandra Nair Capacity regions of two new classes of 2-receiver broadcast channels , 2009, ISIT.

[26]  Eren Sasoglu,et al.  Polarization and Polar Codes , 2012, Found. Trends Commun. Inf. Theory.