MINIMIZATION OF L 2-SENSITIVITY FOR 2-D STATE-SPACE DIGITAL FILTERS SUBJECT TO L 2-SCALING CONSTRAINTS

A new approach to the problem of minimizing L2sensitivity subject to L2-norm scaling constraints for two-dimensional (2-D) state-space digital filters is proposed. Using linear-algebraic techniques, the problem at hand is converted into an unconstrained optimization problem, and the unconstrained problem obtained is then solved by applying an efficient quasi-Newton algorithm. Computer simulation results are presented to illustrate the effectiveness of the proposed technique.

[1]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[2]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[3]  S. Hwang Minimum uncorrelated unit noise in state-space digital filtering , 1977 .

[4]  G. E. Colling,et al.  New Results in 2-D Systems Theory, Part II: 2-D State-Space Models-Realization and the Notions of Controllability, Observability, and Minimality , 1977 .

[5]  Lothar Thiele,et al.  Design of sensitivity and round-off noise optimal state-space discrete systems , 1984 .

[6]  Andreas Antoniou,et al.  Synthesis of 2-D state-space fixed-point digital-filter structures with minimum roundoff noise , 1986 .

[7]  Lothar Thiele,et al.  On the sensitivity of linear state-space systems , 1986 .

[8]  Masayuki Kawamata,et al.  A unified study on the roundoff noise in 2-D state space digital filters , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Masayuki Kawamata Minimization of sensitivity of 2-D state-space digital filters and its relation to 2-D balanced realizations , 1987 .

[10]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  M. Kawamata,et al.  Statistical sensitivity and minimum sensitivity structures with fewer coefficients in discrete time linear systems , 1990 .

[13]  M. Gevers,et al.  Optimal finite precision implementation of a state-estimate feedback controller , 1990 .

[14]  Takao Hinamoto,et al.  Synthesis of 2-D state-space digital filters with low sensitivity based on the Fornasini-Marchesini model , 1990, IEEE Trans. Acoust. Speech Signal Process..

[15]  Brian D. O. Anderson,et al.  Optimal FWL design of state-space digital systems with weighted sensitivity minimization and sparseness consideration , 1992 .

[16]  Takao Hinamoto,et al.  Minimization of frequency-weighting sensitivity in 2 D systems based on the Fornasini-Marchesini second model , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  M. Gevers,et al.  Optimal synthetic FWI design of state-space digital filters , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  Takao Hinamoto,et al.  Synthesis of 2-D separable-denominator digital filters with low sensitivity , 1992 .

[19]  Wei-Yong Yan,et al.  On L2-Sensitivity Minimization of Linear , 1992 .

[20]  Takao Hinamoto,et al.  2-D state-space filter structures with low frequency-weighting sensitivity , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[21]  M. Gevers,et al.  Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects , 1993 .

[22]  B. Moore,et al.  On L 2-Sensitivity Minimization of Linear State-Space Systems , 1996 .

[23]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[24]  Gang Li On frequency weighted minimal L/sub 2/ sensitivity of 2-D systems using Fornasini-Marchesini LSS model , 1997 .

[25]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[26]  Gang Li Two-dimensional system optimal realizations with L2-sensitivity minimization , 1998, IEEE Trans. Signal Process..

[27]  M. Govindaraju,et al.  The Linear System , 1998 .

[28]  Takao Hinamoto,et al.  An analytical approach for the synthesis of two-dimensional state-space filter structures with minimum weighted sensitivity , 1999 .

[29]  Takao Hinamoto,et al.  L2-sensitivity analysis and minimization of 2-D separable-denominator state-space digital filters , 2002, IEEE Trans. Signal Process..

[30]  Takao Hinamoto,et al.  Analysis and minimization of L/sub 2/-sensitivity for linear systems and two-dimensional state-space filters using general controllability and observability Gramians , 2002 .