Stereo Algorithm with Anisotropic Reaction-Diffusion Systems

The computer vision research aims at a better understanding of the human visual system and building artificial visual systems. Vision researchers in psychology and physiology have explored biological visual systems including the human vision, and obtained much knowledge on nature and architecture of their visual information processing. For example, some of previous results in experimental psychology suggested integration of several visual cues [1–3], and others of them showed evidence of anisotropy in the stereo depth perception [4, 5]. Mathematical models and computer algorithms developed according to previous experimental results help us to understand the human visual system and to build artificial visual systems.

[1]  B. Rogers,et al.  The Interaction of Binocular Disparity and Motion Parallax in the Computation of Depth , 1996, Vision Research.

[2]  H. Busse,et al.  Information Transmission in a Diffusion-Coupled Oscillatory Chemical System , 1973, Nature.

[3]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[4]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  Kenneth Showalter,et al.  Design and Control of Wave Propagation Patterns in Excitable Media , 2002, Science.

[6]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[7]  Pavel Mrázek,et al.  Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, International Journal of Computer Vision.

[8]  Riccardo March,et al.  Computation of stereo disparity using regularization , 1988, Pattern Recognit. Lett..

[9]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J T Todd,et al.  The perception of stereoscopic transparency , 1988, Perception & psychophysics.

[12]  Hidetoshi Miike,et al.  Realizing visual functions with the reaction-diffusion mechanism , 2003 .

[13]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[14]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[15]  K. A. Stevens,et al.  The Analogy between Stereo Depth and Brightness , 1989, Perception.

[16]  J. Timmer,et al.  Supporting Online Material Material and Methods , 2022 .

[17]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[18]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[19]  B JULESZ,et al.  Binocular Depth Perception without Familiarity Cues , 1964, Science.

[20]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[21]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  Richard Szeliski,et al.  Stereo Matching with Transparency and Matting , 1999, International Journal of Computer Vision.

[23]  Yoh Iwasa,et al.  Directionality of stripes formed by anisotropic reaction-diffusion models. , 2002, Journal of theoretical biology.

[24]  M J Morgan,et al.  “The Analogy between Stereo Depth and Brightness”: A Reexamination , 1995, Perception.

[25]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Harold W. Thimbleby,et al.  Displaying 3D images: algorithms for single-image random-dot stereograms , 1994, Computer.

[27]  An Luo,et al.  An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions , 1995, International Journal of Computer Vision.

[28]  Inna Tsirlin,et al.  Stereoscopic transparency: constraints on the perception of multiple surfaces. , 2008, Journal of vision.

[29]  J. Beck Effect of orientation and of shape similarity on perceptual grouping , 1966 .

[30]  J. Marsh,et al.  Anisotropies in the Perception of Three-Dimensional Surfaces , 2022 .

[31]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[32]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[33]  Julian Magarey,et al.  Multiresolution Phase-Based Bidirectional Stereo Matching with Provision for Discontinuity and Occlusion , 1998, Digit. Signal Process..

[34]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[35]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[38]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[39]  H. K. Hartline,et al.  SPATIAL SUMMATION OF INHIBITORY INFLUENCES IN THE EYE OF LIMULUS, AND THE MUTUAL INTERACTION OF RECEPTOR UNITS , 1958, The Journal of general physiology.

[40]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  R. Barlow,et al.  Mach bands in the lateral eye of Limulus , 1975, The Journal of general physiology.

[42]  Masahiko Shizawa,et al.  On Visual Ambiguities Due to Transparency in Motion and Stereo , 1992, ECCV.

[43]  DeLiang Wang,et al.  A dynamically coupled neural oscillator network for image segmentation , 2002, Neural Networks.

[44]  W. Köhler The task of Gestalt psychology , 1969 .

[45]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[46]  L. Kuhnert,et al.  A new optical photochemical memory device in a light-sensitive chemical active medium , 1986, Nature.

[47]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[48]  Shinya Saida,et al.  Integration of binocular disparity and monocular cues at near threshold level , 2003, Vision Research.

[49]  Hidetoshi Miike,et al.  Reaction–diffusion algorithm for stereo disparity detection , 2009, Machine Vision and Applications.

[50]  Hidetoshi Miike,et al.  Stationary pattern formation in a discrete excitable system with strong inhibitory coupling. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  H. Miike,et al.  Edge detection with reaction-diffusion equations having a local average threshold , 2008, Pattern Recognition and Image Analysis.

[52]  Shigeru Kondo The reaction‐diffusion system: a mechanism for autonomous pattern formation in the animal skin , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[53]  B. Rogers,et al.  Anisotropies in the perception of three-dimensional surfaces. , 1983, Science.

[54]  V. I. Krinsky,et al.  Image processing using light-sensitive chemical waves , 1989, Nature.

[55]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[56]  G. Palm,et al.  Analysis of a cooperative stereo algorithm , 1978, Biological Cybernetics.